| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fislw.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | slwhash.3 |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | slwhash.4 |  |-  ( ph -> H e. ( P pSyl G ) ) | 
						
							| 4 |  | slwsubg |  |-  ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 6 |  | subgrcl |  |-  ( H e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 8 |  | slwprm |  |-  ( H e. ( P pSyl G ) -> P e. Prime ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> P e. Prime ) | 
						
							| 10 | 1 | grpbn0 |  |-  ( G e. Grp -> X =/= (/) ) | 
						
							| 11 | 7 10 | syl |  |-  ( ph -> X =/= (/) ) | 
						
							| 12 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 14 | 11 13 | mpbird |  |-  ( ph -> ( # ` X ) e. NN ) | 
						
							| 15 | 9 14 | pccld |  |-  ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) | 
						
							| 16 |  | pcdvds |  |-  ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( P ^ ( P pCnt ( # ` X ) ) ) || ( # ` X ) ) | 
						
							| 17 | 9 14 16 | syl2anc |  |-  ( ph -> ( P ^ ( P pCnt ( # ` X ) ) ) || ( # ` X ) ) | 
						
							| 18 | 1 7 2 9 15 17 | sylow1 |  |-  ( ph -> E. k e. ( SubGrp ` G ) ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 19 | 2 | adantr |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X e. Fin ) | 
						
							| 20 | 5 | adantr |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( SubGrp ` G ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> k e. ( SubGrp ` G ) ) | 
						
							| 22 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 23 |  | eqid |  |-  ( G |`s H ) = ( G |`s H ) | 
						
							| 24 | 23 | slwpgp |  |-  ( H e. ( P pSyl G ) -> P pGrp ( G |`s H ) ) | 
						
							| 25 | 3 24 | syl |  |-  ( ph -> P pGrp ( G |`s H ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P pGrp ( G |`s H ) ) | 
						
							| 27 |  | simprr |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 28 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 29 | 1 19 20 21 22 26 27 28 | sylow2b |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> E. g e. X H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 30 |  | simprr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 31 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H e. ( P pSyl G ) ) | 
						
							| 32 | 31 8 | syl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> P e. Prime ) | 
						
							| 33 | 15 | ad2antrr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) | 
						
							| 34 | 21 | adantr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k e. ( SubGrp ` G ) ) | 
						
							| 35 |  | simprl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> g e. X ) | 
						
							| 36 |  | eqid |  |-  ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) | 
						
							| 37 | 1 22 28 36 | conjsubg |  |-  ( ( k e. ( SubGrp ` G ) /\ g e. X ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) | 
						
							| 38 | 34 35 37 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) | 
						
							| 39 |  | eqid |  |-  ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 40 | 39 | subgbas |  |-  ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) | 
						
							| 41 | 38 40 | syl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) ) | 
						
							| 43 | 1 22 28 36 | conjsubgen |  |-  ( ( k e. ( SubGrp ` G ) /\ g e. X ) -> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 44 | 34 35 43 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 45 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> X e. Fin ) | 
						
							| 46 | 1 | subgss |  |-  ( k e. ( SubGrp ` G ) -> k C_ X ) | 
						
							| 47 | 34 46 | syl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k C_ X ) | 
						
							| 48 | 45 47 | ssfid |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k e. Fin ) | 
						
							| 49 | 1 | subgss |  |-  ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) C_ X ) | 
						
							| 50 | 38 49 | syl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) C_ X ) | 
						
							| 51 | 45 50 | ssfid |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. Fin ) | 
						
							| 52 |  | hashen |  |-  ( ( k e. Fin /\ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. Fin ) -> ( ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 53 | 48 51 52 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 54 | 44 53 | mpbird |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 55 |  | simplrr |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 56 | 54 55 | eqtr3d |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 57 | 42 56 | eqtr3d |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 58 |  | oveq2 |  |-  ( n = ( P pCnt ( # ` X ) ) -> ( P ^ n ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 59 | 58 | rspceeqv |  |-  ( ( ( P pCnt ( # ` X ) ) e. NN0 /\ ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) | 
						
							| 60 | 33 57 59 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) | 
						
							| 61 | 39 | subggrp |  |-  ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp ) | 
						
							| 62 | 38 61 | syl |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp ) | 
						
							| 63 | 41 51 | eqeltrrd |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) e. Fin ) | 
						
							| 64 |  | eqid |  |-  ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 65 | 64 | pgpfi |  |-  ( ( ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp /\ ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) e. Fin ) -> ( P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 66 | 62 63 65 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 67 | 32 60 66 | mpbir2and |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 68 | 39 | slwispgp |  |-  ( ( H e. ( P pSyl G ) /\ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) -> ( ( H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) /\ P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) <-> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 69 | 31 38 68 | syl2anc |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( ( H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) /\ P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) <-> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 70 | 30 67 69 | mpbi2and |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` H ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) | 
						
							| 72 | 71 56 | eqtrd |  |-  ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 73 | 29 72 | rexlimddv |  |-  ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 74 | 18 73 | rexlimddv |  |-  ( ph -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |