| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmulcl |
|- ( ( M e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
| 2 |
1
|
3adant2 |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
| 3 |
|
zmulcl |
|- ( ( N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
| 4 |
3
|
3adant1 |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
| 5 |
2 4
|
jca |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 6 |
5
|
3adant3r |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 7 |
|
3simpa |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 8 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ ) |
| 9 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 10 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 11 |
9 10
|
anim12i |
|- ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) ) |
| 12 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 13 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 14 |
13
|
anim1i |
|- ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) ) |
| 15 |
|
mulass |
|- ( ( x e. CC /\ M e. CC /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 16 |
15
|
3expa |
|- ( ( ( x e. CC /\ M e. CC ) /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 17 |
16
|
adantrr |
|- ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 18 |
17
|
3adant2 |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. ( M x. K ) ) = ( N x. K ) ) ) |
| 20 |
|
mulcl |
|- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC ) |
| 21 |
|
mulcan2 |
|- ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 22 |
20 21
|
syl3an1 |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 23 |
19 22
|
bitr3d |
|- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 24 |
11 12 14 23
|
syl3an |
|- ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 25 |
24
|
3expb |
|- ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 26 |
25
|
3impa |
|- ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 27 |
26
|
3coml |
|- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 28 |
27
|
3expia |
|- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) ) |
| 29 |
28
|
3impb |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) ) |
| 30 |
29
|
imp |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 31 |
30
|
biimpd |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) -> ( x x. M ) = N ) ) |
| 32 |
6 7 8 31
|
dvds1lem |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) -> M || N ) ) |
| 33 |
|
dvdsmulc |
|- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
| 34 |
33
|
3adant3r |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
| 35 |
32 34
|
impbid |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) <-> M || N ) ) |