Description: Cancellation law for multiplication. (Contributed by NM, 21-Jan-2005) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | mulcan2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
2 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
3 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
4 | simp3r | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
|
5 | 1 2 3 4 | mulcan2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. C ) = ( B x. C ) <-> A = B ) ) |