| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gasubg.1 |
|
| 2 |
|
gaset |
|
| 3 |
1
|
subggrp |
|
| 4 |
2 3
|
anim12ci |
|
| 5 |
|
eqid |
|
| 6 |
5
|
gaf |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
5
|
subgss |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
xpss1 |
|
| 12 |
10 11
|
syl |
|
| 13 |
7 12
|
fssresd |
|
| 14 |
1
|
subgbas |
|
| 15 |
8 14
|
syl |
|
| 16 |
15
|
xpeq1d |
|
| 17 |
16
|
feq2d |
|
| 18 |
13 17
|
mpbid |
|
| 19 |
8
|
adantr |
|
| 20 |
|
eqid |
|
| 21 |
20
|
subg0cl |
|
| 22 |
19 21
|
syl |
|
| 23 |
|
simpr |
|
| 24 |
|
ovres |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
1 20
|
subg0 |
|
| 27 |
19 26
|
syl |
|
| 28 |
27
|
oveq1d |
|
| 29 |
20
|
gagrpid |
|
| 30 |
29
|
adantlr |
|
| 31 |
25 28 30
|
3eqtr3d |
|
| 32 |
|
eqimss2 |
|
| 33 |
15 32
|
syl |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
sselda |
|
| 36 |
34
|
sselda |
|
| 37 |
35 36
|
anim12dan |
|
| 38 |
|
simprl |
|
| 39 |
7
|
ad2antrr |
|
| 40 |
9
|
ad3antlr |
|
| 41 |
|
simprr |
|
| 42 |
40 41
|
sseldd |
|
| 43 |
23
|
adantr |
|
| 44 |
39 42 43
|
fovcdmd |
|
| 45 |
|
ovres |
|
| 46 |
38 44 45
|
syl2anc |
|
| 47 |
|
ovres |
|
| 48 |
41 43 47
|
syl2anc |
|
| 49 |
48
|
oveq2d |
|
| 50 |
|
simplll |
|
| 51 |
40 38
|
sseldd |
|
| 52 |
|
eqid |
|
| 53 |
5 52
|
gaass |
|
| 54 |
50 51 42 43 53
|
syl13anc |
|
| 55 |
46 49 54
|
3eqtr4d |
|
| 56 |
52
|
subgcl |
|
| 57 |
56
|
3expb |
|
| 58 |
19 57
|
sylan |
|
| 59 |
|
ovres |
|
| 60 |
58 43 59
|
syl2anc |
|
| 61 |
1 52
|
ressplusg |
|
| 62 |
61
|
ad3antlr |
|
| 63 |
62
|
oveqd |
|
| 64 |
63
|
oveq1d |
|
| 65 |
55 60 64
|
3eqtr2rd |
|
| 66 |
37 65
|
syldan |
|
| 67 |
66
|
ralrimivva |
|
| 68 |
31 67
|
jca |
|
| 69 |
68
|
ralrimiva |
|
| 70 |
18 69
|
jca |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
71 72 73
|
isga |
|
| 75 |
4 70 74
|
sylanbrc |
|