| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gasubg.1 |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
gaset |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝑌 ∈ V ) |
| 3 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 4 |
2 3
|
anim12ci |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐻 ∈ Grp ∧ 𝑌 ∈ V ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 6 |
5
|
gaf |
⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 7 |
6
|
adantr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 8 |
|
simpr |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
5
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 |
|
xpss1 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑆 × 𝑌 ) ⊆ ( ( Base ‘ 𝐺 ) × 𝑌 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑌 ) ⊆ ( ( Base ‘ 𝐺 ) × 𝑌 ) ) |
| 13 |
7 12
|
fssresd |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( 𝑆 × 𝑌 ) ⟶ 𝑌 ) |
| 14 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 15 |
8 14
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 16 |
15
|
xpeq1d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑌 ) = ( ( Base ‘ 𝐻 ) × 𝑌 ) ) |
| 17 |
16
|
feq2d |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( 𝑆 × 𝑌 ) ⟶ 𝑌 ↔ ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ) ) |
| 18 |
13 17
|
mpbid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ) |
| 19 |
8
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 21 |
20
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 22 |
19 21
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 23 |
|
simpr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) |
| 24 |
|
ovres |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) |
| 25 |
22 23 24
|
syl2anc |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) |
| 26 |
1 20
|
subg0 |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 27 |
19 26
|
syl |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) |
| 29 |
20
|
gagrpid |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
| 31 |
25 28 30
|
3eqtr3d |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ) |
| 32 |
|
eqimss2 |
⊢ ( 𝑆 = ( Base ‘ 𝐻 ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) |
| 33 |
15 32
|
syl |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) |
| 35 |
34
|
sselda |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → 𝑦 ∈ 𝑆 ) |
| 36 |
34
|
sselda |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) → 𝑧 ∈ 𝑆 ) |
| 37 |
35 36
|
anim12dan |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) |
| 38 |
|
simprl |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 39 |
7
|
ad2antrr |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 40 |
9
|
ad3antlr |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 41 |
|
simprr |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) |
| 42 |
40 41
|
sseldd |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 43 |
23
|
adantr |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑌 ) |
| 44 |
39 42 43
|
fovcdmd |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ⊕ 𝑥 ) ∈ 𝑌 ) |
| 45 |
|
ovres |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( 𝑧 ⊕ 𝑥 ) ∈ 𝑌 ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 46 |
38 44 45
|
syl2anc |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 47 |
|
ovres |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑧 ⊕ 𝑥 ) ) |
| 48 |
41 43 47
|
syl2anc |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑧 ⊕ 𝑥 ) ) |
| 49 |
48
|
oveq2d |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) ) |
| 50 |
|
simplll |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) |
| 51 |
40 38
|
sseldd |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 52 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 53 |
5 52
|
gaass |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 54 |
50 51 42 43 53
|
syl13anc |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 55 |
46 49 54
|
3eqtr4d |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) |
| 56 |
52
|
subgcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 57 |
56
|
3expb |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 58 |
19 57
|
sylan |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 59 |
|
ovres |
⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) |
| 60 |
58 43 59
|
syl2anc |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) |
| 61 |
1 52
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 62 |
61
|
ad3antlr |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 63 |
62
|
oveqd |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) |
| 65 |
55 60 64
|
3eqtr2rd |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 66 |
37 65
|
syldan |
⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 67 |
66
|
ralrimivva |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 68 |
31 67
|
jca |
⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) |
| 69 |
68
|
ralrimiva |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) |
| 70 |
18 69
|
jca |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) ) |
| 71 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 72 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 73 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 74 |
71 72 73
|
isga |
⊢ ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ∈ ( 𝐻 GrpAct 𝑌 ) ↔ ( ( 𝐻 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) ) ) |
| 75 |
4 70 74
|
sylanbrc |
⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ∈ ( 𝐻 GrpAct 𝑌 ) ) |