Metamath Proof Explorer


Theorem eluz2b2

Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012)

Ref Expression
Assertion eluz2b2 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
2 1re 1 ∈ ℝ
3 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
4 ltle ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 1 < 𝑁 → 1 ≤ 𝑁 ) )
5 2 3 4 sylancr ( 𝑁 ∈ ℤ → ( 1 < 𝑁 → 1 ≤ 𝑁 ) )
6 5 imdistani ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) )
7 elnnz1 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) )
8 6 7 sylibr ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 𝑁 ∈ ℕ )
9 simpr ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 1 < 𝑁 )
10 8 9 jca ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
11 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
12 11 anim1i ( ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
13 10 12 impbii ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )
14 1 13 bitri ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) )