| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2b.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | sylow2b.h |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 4 |  | sylow2b.k |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 5 |  | sylow2b.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow2b.r |  |-  .~ = ( G ~QG K ) | 
						
							| 7 |  | sylow2b.m |  |-  .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 8 |  | eqid |  |-  ( G |`s H ) = ( G |`s H ) | 
						
							| 9 | 8 | subggrp |  |-  ( H e. ( SubGrp ` G ) -> ( G |`s H ) e. Grp ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> ( G |`s H ) e. Grp ) | 
						
							| 11 |  | pwfi |  |-  ( X e. Fin <-> ~P X e. Fin ) | 
						
							| 12 | 2 11 | sylib |  |-  ( ph -> ~P X e. Fin ) | 
						
							| 13 | 1 6 | eqger |  |-  ( K e. ( SubGrp ` G ) -> .~ Er X ) | 
						
							| 14 | 4 13 | syl |  |-  ( ph -> .~ Er X ) | 
						
							| 15 | 14 | qsss |  |-  ( ph -> ( X /. .~ ) C_ ~P X ) | 
						
							| 16 | 12 15 | ssexd |  |-  ( ph -> ( X /. .~ ) e. _V ) | 
						
							| 17 | 10 16 | jca |  |-  ( ph -> ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) ) | 
						
							| 18 |  | vex |  |-  y e. _V | 
						
							| 19 | 18 | mptex |  |-  ( z e. y |-> ( x .+ z ) ) e. _V | 
						
							| 20 | 19 | rnex |  |-  ran ( z e. y |-> ( x .+ z ) ) e. _V | 
						
							| 21 | 7 20 | fnmpoi |  |-  .x. Fn ( H X. ( X /. .~ ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> .x. Fn ( H X. ( X /. .~ ) ) ) | 
						
							| 23 |  | eqid |  |-  ( X /. .~ ) = ( X /. .~ ) | 
						
							| 24 |  | oveq2 |  |-  ( [ s ] .~ = v -> ( u .x. [ s ] .~ ) = ( u .x. v ) ) | 
						
							| 25 | 24 | eleq1d |  |-  ( [ s ] .~ = v -> ( ( u .x. [ s ] .~ ) e. ( X /. .~ ) <-> ( u .x. v ) e. ( X /. .~ ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) = [ ( u .+ s ) ] .~ ) | 
						
							| 27 | 6 | ovexi |  |-  .~ e. _V | 
						
							| 28 |  | subgrcl |  |-  ( H e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 29 | 3 28 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( ph /\ u e. H /\ s e. X ) -> G e. Grp ) | 
						
							| 31 | 1 | subgss |  |-  ( H e. ( SubGrp ` G ) -> H C_ X ) | 
						
							| 32 | 3 31 | syl |  |-  ( ph -> H C_ X ) | 
						
							| 33 | 32 | sselda |  |-  ( ( ph /\ u e. H ) -> u e. X ) | 
						
							| 34 | 33 | 3adant3 |  |-  ( ( ph /\ u e. H /\ s e. X ) -> u e. X ) | 
						
							| 35 |  | simp3 |  |-  ( ( ph /\ u e. H /\ s e. X ) -> s e. X ) | 
						
							| 36 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ u e. X /\ s e. X ) -> ( u .+ s ) e. X ) | 
						
							| 37 | 30 34 35 36 | syl3anc |  |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .+ s ) e. X ) | 
						
							| 38 |  | ecelqsg |  |-  ( ( .~ e. _V /\ ( u .+ s ) e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) ) | 
						
							| 39 | 27 37 38 | sylancr |  |-  ( ( ph /\ u e. H /\ s e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) ) | 
						
							| 40 | 26 39 | eqeltrd |  |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) ) | 
						
							| 41 | 40 | 3expa |  |-  ( ( ( ph /\ u e. H ) /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) ) | 
						
							| 42 | 23 25 41 | ectocld |  |-  ( ( ( ph /\ u e. H ) /\ v e. ( X /. .~ ) ) -> ( u .x. v ) e. ( X /. .~ ) ) | 
						
							| 43 | 42 | ralrimiva |  |-  ( ( ph /\ u e. H ) -> A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) | 
						
							| 44 | 43 | ralrimiva |  |-  ( ph -> A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) | 
						
							| 45 |  | ffnov |  |-  ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> ( .x. Fn ( H X. ( X /. .~ ) ) /\ A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) ) | 
						
							| 46 | 22 44 45 | sylanbrc |  |-  ( ph -> .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) ) | 
						
							| 47 | 8 | subgbas |  |-  ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 48 | 3 47 | syl |  |-  ( ph -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 49 | 48 | xpeq1d |  |-  ( ph -> ( H X. ( X /. .~ ) ) = ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) ) | 
						
							| 50 | 49 | feq2d |  |-  ( ph -> ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) ) ) | 
						
							| 51 | 46 50 | mpbid |  |-  ( ph -> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) ) | 
						
							| 52 |  | oveq2 |  |-  ( [ s ] .~ = u -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. u ) ) | 
						
							| 53 |  | id |  |-  ( [ s ] .~ = u -> [ s ] .~ = u ) | 
						
							| 54 | 52 53 | eqeq12d |  |-  ( [ s ] .~ = u -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ <-> ( ( 0g ` ( G |`s H ) ) .x. u ) = u ) ) | 
						
							| 55 |  | oveq2 |  |-  ( [ s ] .~ = u -> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) ) | 
						
							| 56 |  | oveq2 |  |-  ( [ s ] .~ = u -> ( b .x. [ s ] .~ ) = ( b .x. u ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( [ s ] .~ = u -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. ( b .x. u ) ) ) | 
						
							| 58 | 55 57 | eqeq12d |  |-  ( [ s ] .~ = u -> ( ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) | 
						
							| 59 | 58 | 2ralbidv |  |-  ( [ s ] .~ = u -> ( A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) | 
						
							| 60 | 54 59 | anbi12d |  |-  ( [ s ] .~ = u -> ( ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) <-> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) | 
						
							| 61 |  | simpl |  |-  ( ( ph /\ s e. X ) -> ph ) | 
						
							| 62 | 3 | adantr |  |-  ( ( ph /\ s e. X ) -> H e. ( SubGrp ` G ) ) | 
						
							| 63 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 64 | 63 | subg0cl |  |-  ( H e. ( SubGrp ` G ) -> ( 0g ` G ) e. H ) | 
						
							| 65 | 62 64 | syl |  |-  ( ( ph /\ s e. X ) -> ( 0g ` G ) e. H ) | 
						
							| 66 |  | simpr |  |-  ( ( ph /\ s e. X ) -> s e. X ) | 
						
							| 67 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ ( 0g ` G ) e. H /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ ) | 
						
							| 68 | 61 65 66 67 | syl3anc |  |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ ) | 
						
							| 69 | 8 63 | subg0 |  |-  ( H e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) ) | 
						
							| 70 | 62 69 | syl |  |-  ( ( ph /\ s e. X ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) ) | 
						
							| 72 | 1 5 63 | grplid |  |-  ( ( G e. Grp /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s ) | 
						
							| 73 | 29 72 | sylan |  |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s ) | 
						
							| 74 | 73 | eceq1d |  |-  ( ( ph /\ s e. X ) -> [ ( ( 0g ` G ) .+ s ) ] .~ = [ s ] .~ ) | 
						
							| 75 | 68 71 74 | 3eqtr3d |  |-  ( ( ph /\ s e. X ) -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ ) | 
						
							| 76 | 62 | adantr |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H e. ( SubGrp ` G ) ) | 
						
							| 77 | 76 28 | syl |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> G e. Grp ) | 
						
							| 78 | 76 31 | syl |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H C_ X ) | 
						
							| 79 |  | simprl |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. H ) | 
						
							| 80 | 78 79 | sseldd |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. X ) | 
						
							| 81 |  | simprr |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. H ) | 
						
							| 82 | 78 81 | sseldd |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. X ) | 
						
							| 83 | 66 | adantr |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> s e. X ) | 
						
							| 84 | 1 5 | grpass |  |-  ( ( G e. Grp /\ ( a e. X /\ b e. X /\ s e. X ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) ) | 
						
							| 85 | 77 80 82 83 84 | syl13anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) ) | 
						
							| 86 | 85 | eceq1d |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = [ ( a .+ ( b .+ s ) ) ] .~ ) | 
						
							| 87 | 61 | adantr |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ph ) | 
						
							| 88 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ b e. X /\ s e. X ) -> ( b .+ s ) e. X ) | 
						
							| 89 | 77 82 83 88 | syl3anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .+ s ) e. X ) | 
						
							| 90 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ a e. H /\ ( b .+ s ) e. X ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ ) | 
						
							| 91 | 87 79 89 90 | syl3anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ ) | 
						
							| 92 | 86 91 | eqtr4d |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = ( a .x. [ ( b .+ s ) ] .~ ) ) | 
						
							| 93 | 5 | subgcl |  |-  ( ( H e. ( SubGrp ` G ) /\ a e. H /\ b e. H ) -> ( a .+ b ) e. H ) | 
						
							| 94 | 76 79 81 93 | syl3anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .+ b ) e. H ) | 
						
							| 95 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ ( a .+ b ) e. H /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ ) | 
						
							| 96 | 87 94 83 95 | syl3anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ ) | 
						
							| 97 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ b e. H /\ s e. X ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ ) | 
						
							| 98 | 87 81 83 97 | syl3anc |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ ) | 
						
							| 99 | 98 | oveq2d |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. [ ( b .+ s ) ] .~ ) ) | 
						
							| 100 | 92 96 99 | 3eqtr4d |  |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) | 
						
							| 101 | 100 | ralrimivva |  |-  ( ( ph /\ s e. X ) -> A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) | 
						
							| 102 | 62 47 | syl |  |-  ( ( ph /\ s e. X ) -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 103 | 8 5 | ressplusg |  |-  ( H e. ( SubGrp ` G ) -> .+ = ( +g ` ( G |`s H ) ) ) | 
						
							| 104 | 3 103 | syl |  |-  ( ph -> .+ = ( +g ` ( G |`s H ) ) ) | 
						
							| 105 | 104 | oveqdr |  |-  ( ( ph /\ s e. X ) -> ( a .+ b ) = ( a ( +g ` ( G |`s H ) ) b ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( ( ph /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) ) | 
						
							| 107 | 106 | eqeq1d |  |-  ( ( ph /\ s e. X ) -> ( ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) | 
						
							| 108 | 102 107 | raleqbidv |  |-  ( ( ph /\ s e. X ) -> ( A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) | 
						
							| 109 | 102 108 | raleqbidv |  |-  ( ( ph /\ s e. X ) -> ( A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) | 
						
							| 110 | 101 109 | mpbid |  |-  ( ( ph /\ s e. X ) -> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) | 
						
							| 111 | 75 110 | jca |  |-  ( ( ph /\ s e. X ) -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) | 
						
							| 112 | 23 60 111 | ectocld |  |-  ( ( ph /\ u e. ( X /. .~ ) ) -> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) | 
						
							| 113 | 112 | ralrimiva |  |-  ( ph -> A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) | 
						
							| 114 | 51 113 | jca |  |-  ( ph -> ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) | 
						
							| 115 |  | eqid |  |-  ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) | 
						
							| 116 |  | eqid |  |-  ( +g ` ( G |`s H ) ) = ( +g ` ( G |`s H ) ) | 
						
							| 117 |  | eqid |  |-  ( 0g ` ( G |`s H ) ) = ( 0g ` ( G |`s H ) ) | 
						
							| 118 | 115 116 117 | isga |  |-  ( .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) <-> ( ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) /\ ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) ) | 
						
							| 119 | 17 114 118 | sylanbrc |  |-  ( ph -> .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) ) |