Metamath Proof Explorer


Theorem sylow2blem2

Description: Lemma for sylow2b . Left multiplication in a subgroup H is a group action on the set of all left cosets of K . (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2b.x X=BaseG
sylow2b.xf φXFin
sylow2b.h φHSubGrpG
sylow2b.k φKSubGrpG
sylow2b.a +˙=+G
sylow2b.r ˙=G~QGK
sylow2b.m ·˙=xH,yX/˙ranzyx+˙z
Assertion sylow2blem2 φ·˙G𝑠HGrpActX/˙

Proof

Step Hyp Ref Expression
1 sylow2b.x X=BaseG
2 sylow2b.xf φXFin
3 sylow2b.h φHSubGrpG
4 sylow2b.k φKSubGrpG
5 sylow2b.a +˙=+G
6 sylow2b.r ˙=G~QGK
7 sylow2b.m ·˙=xH,yX/˙ranzyx+˙z
8 eqid G𝑠H=G𝑠H
9 8 subggrp HSubGrpGG𝑠HGrp
10 3 9 syl φG𝑠HGrp
11 pwfi XFin𝒫XFin
12 2 11 sylib φ𝒫XFin
13 1 6 eqger KSubGrpG˙ErX
14 4 13 syl φ˙ErX
15 14 qsss φX/˙𝒫X
16 12 15 ssexd φX/˙V
17 10 16 jca φG𝑠HGrpX/˙V
18 vex yV
19 18 mptex zyx+˙zV
20 19 rnex ranzyx+˙zV
21 7 20 fnmpoi ·˙FnH×X/˙
22 21 a1i φ·˙FnH×X/˙
23 eqid X/˙=X/˙
24 oveq2 s˙=vu·˙s˙=u·˙v
25 24 eleq1d s˙=vu·˙s˙X/˙u·˙vX/˙
26 1 2 3 4 5 6 7 sylow2blem1 φuHsXu·˙s˙=u+˙s˙
27 6 ovexi ˙V
28 subgrcl HSubGrpGGGrp
29 3 28 syl φGGrp
30 29 3ad2ant1 φuHsXGGrp
31 1 subgss HSubGrpGHX
32 3 31 syl φHX
33 32 sselda φuHuX
34 33 3adant3 φuHsXuX
35 simp3 φuHsXsX
36 1 5 grpcl GGrpuXsXu+˙sX
37 30 34 35 36 syl3anc φuHsXu+˙sX
38 ecelqsg ˙Vu+˙sXu+˙s˙X/˙
39 27 37 38 sylancr φuHsXu+˙s˙X/˙
40 26 39 eqeltrd φuHsXu·˙s˙X/˙
41 40 3expa φuHsXu·˙s˙X/˙
42 23 25 41 ectocld φuHvX/˙u·˙vX/˙
43 42 ralrimiva φuHvX/˙u·˙vX/˙
44 43 ralrimiva φuHvX/˙u·˙vX/˙
45 ffnov ·˙:H×X/˙X/˙·˙FnH×X/˙uHvX/˙u·˙vX/˙
46 22 44 45 sylanbrc φ·˙:H×X/˙X/˙
47 8 subgbas HSubGrpGH=BaseG𝑠H
48 3 47 syl φH=BaseG𝑠H
49 48 xpeq1d φH×X/˙=BaseG𝑠H×X/˙
50 49 feq2d φ·˙:H×X/˙X/˙·˙:BaseG𝑠H×X/˙X/˙
51 46 50 mpbid φ·˙:BaseG𝑠H×X/˙X/˙
52 oveq2 s˙=u0G𝑠H·˙s˙=0G𝑠H·˙u
53 id s˙=us˙=u
54 52 53 eqeq12d s˙=u0G𝑠H·˙s˙=s˙0G𝑠H·˙u=u
55 oveq2 s˙=ua+G𝑠Hb·˙s˙=a+G𝑠Hb·˙u
56 oveq2 s˙=ub·˙s˙=b·˙u
57 56 oveq2d s˙=ua·˙b·˙s˙=a·˙b·˙u
58 55 57 eqeq12d s˙=ua+G𝑠Hb·˙s˙=a·˙b·˙s˙a+G𝑠Hb·˙u=a·˙b·˙u
59 58 2ralbidv s˙=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙aBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
60 54 59 anbi12d s˙=u0G𝑠H·˙s˙=s˙aBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙0G𝑠H·˙u=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
61 simpl φsXφ
62 3 adantr φsXHSubGrpG
63 eqid 0G=0G
64 63 subg0cl HSubGrpG0GH
65 62 64 syl φsX0GH
66 simpr φsXsX
67 1 2 3 4 5 6 7 sylow2blem1 φ0GHsX0G·˙s˙=0G+˙s˙
68 61 65 66 67 syl3anc φsX0G·˙s˙=0G+˙s˙
69 8 63 subg0 HSubGrpG0G=0G𝑠H
70 62 69 syl φsX0G=0G𝑠H
71 70 oveq1d φsX0G·˙s˙=0G𝑠H·˙s˙
72 1 5 63 grplid GGrpsX0G+˙s=s
73 29 72 sylan φsX0G+˙s=s
74 73 eceq1d φsX0G+˙s˙=s˙
75 68 71 74 3eqtr3d φsX0G𝑠H·˙s˙=s˙
76 62 adantr φsXaHbHHSubGrpG
77 76 28 syl φsXaHbHGGrp
78 76 31 syl φsXaHbHHX
79 simprl φsXaHbHaH
80 78 79 sseldd φsXaHbHaX
81 simprr φsXaHbHbH
82 78 81 sseldd φsXaHbHbX
83 66 adantr φsXaHbHsX
84 1 5 grpass GGrpaXbXsXa+˙b+˙s=a+˙b+˙s
85 77 80 82 83 84 syl13anc φsXaHbHa+˙b+˙s=a+˙b+˙s
86 85 eceq1d φsXaHbHa+˙b+˙s˙=a+˙b+˙s˙
87 61 adantr φsXaHbHφ
88 1 5 grpcl GGrpbXsXb+˙sX
89 77 82 83 88 syl3anc φsXaHbHb+˙sX
90 1 2 3 4 5 6 7 sylow2blem1 φaHb+˙sXa·˙b+˙s˙=a+˙b+˙s˙
91 87 79 89 90 syl3anc φsXaHbHa·˙b+˙s˙=a+˙b+˙s˙
92 86 91 eqtr4d φsXaHbHa+˙b+˙s˙=a·˙b+˙s˙
93 5 subgcl HSubGrpGaHbHa+˙bH
94 76 79 81 93 syl3anc φsXaHbHa+˙bH
95 1 2 3 4 5 6 7 sylow2blem1 φa+˙bHsXa+˙b·˙s˙=a+˙b+˙s˙
96 87 94 83 95 syl3anc φsXaHbHa+˙b·˙s˙=a+˙b+˙s˙
97 1 2 3 4 5 6 7 sylow2blem1 φbHsXb·˙s˙=b+˙s˙
98 87 81 83 97 syl3anc φsXaHbHb·˙s˙=b+˙s˙
99 98 oveq2d φsXaHbHa·˙b·˙s˙=a·˙b+˙s˙
100 92 96 99 3eqtr4d φsXaHbHa+˙b·˙s˙=a·˙b·˙s˙
101 100 ralrimivva φsXaHbHa+˙b·˙s˙=a·˙b·˙s˙
102 62 47 syl φsXH=BaseG𝑠H
103 8 5 ressplusg HSubGrpG+˙=+G𝑠H
104 3 103 syl φ+˙=+G𝑠H
105 104 oveqdr φsXa+˙b=a+G𝑠Hb
106 105 oveq1d φsXa+˙b·˙s˙=a+G𝑠Hb·˙s˙
107 106 eqeq1d φsXa+˙b·˙s˙=a·˙b·˙s˙a+G𝑠Hb·˙s˙=a·˙b·˙s˙
108 102 107 raleqbidv φsXbHa+˙b·˙s˙=a·˙b·˙s˙bBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙
109 102 108 raleqbidv φsXaHbHa+˙b·˙s˙=a·˙b·˙s˙aBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙
110 101 109 mpbid φsXaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙
111 75 110 jca φsX0G𝑠H·˙s˙=s˙aBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙s˙=a·˙b·˙s˙
112 23 60 111 ectocld φuX/˙0G𝑠H·˙u=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
113 112 ralrimiva φuX/˙0G𝑠H·˙u=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
114 51 113 jca φ·˙:BaseG𝑠H×X/˙X/˙uX/˙0G𝑠H·˙u=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
115 eqid BaseG𝑠H=BaseG𝑠H
116 eqid +G𝑠H=+G𝑠H
117 eqid 0G𝑠H=0G𝑠H
118 115 116 117 isga ·˙G𝑠HGrpActX/˙G𝑠HGrpX/˙V·˙:BaseG𝑠H×X/˙X/˙uX/˙0G𝑠H·˙u=uaBaseG𝑠HbBaseG𝑠Ha+G𝑠Hb·˙u=a·˙b·˙u
119 17 114 118 sylanbrc φ·˙G𝑠HGrpActX/˙