Metamath Proof Explorer


Theorem sylow2alem1

Description: Lemma for sylow2a . An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2a.x X = Base G
sylow2a.m φ ˙ G GrpAct Y
sylow2a.p φ P pGrp G
sylow2a.f φ X Fin
sylow2a.y φ Y Fin
sylow2a.z Z = u Y | h X h ˙ u = u
sylow2a.r ˙ = x y | x y Y g X g ˙ x = y
Assertion sylow2alem1 φ A Z A ˙ = A

Proof

Step Hyp Ref Expression
1 sylow2a.x X = Base G
2 sylow2a.m φ ˙ G GrpAct Y
3 sylow2a.p φ P pGrp G
4 sylow2a.f φ X Fin
5 sylow2a.y φ Y Fin
6 sylow2a.z Z = u Y | h X h ˙ u = u
7 sylow2a.r ˙ = x y | x y Y g X g ˙ x = y
8 vex w V
9 simpr φ A Z A Z
10 elecg w V A Z w A ˙ A ˙ w
11 8 9 10 sylancr φ A Z w A ˙ A ˙ w
12 7 gaorb A ˙ w A Y w Y k X k ˙ A = w
13 12 simp3bi A ˙ w k X k ˙ A = w
14 oveq2 u = A h ˙ u = h ˙ A
15 id u = A u = A
16 14 15 eqeq12d u = A h ˙ u = u h ˙ A = A
17 16 ralbidv u = A h X h ˙ u = u h X h ˙ A = A
18 17 6 elrab2 A Z A Y h X h ˙ A = A
19 9 18 sylib φ A Z A Y h X h ˙ A = A
20 19 simprd φ A Z h X h ˙ A = A
21 oveq1 h = k h ˙ A = k ˙ A
22 21 eqeq1d h = k h ˙ A = A k ˙ A = A
23 22 rspccva h X h ˙ A = A k X k ˙ A = A
24 20 23 sylan φ A Z k X k ˙ A = A
25 eqeq1 k ˙ A = w k ˙ A = A w = A
26 24 25 syl5ibcom φ A Z k X k ˙ A = w w = A
27 26 rexlimdva φ A Z k X k ˙ A = w w = A
28 13 27 syl5 φ A Z A ˙ w w = A
29 11 28 sylbid φ A Z w A ˙ w = A
30 velsn w A w = A
31 29 30 syl6ibr φ A Z w A ˙ w A
32 31 ssrdv φ A Z A ˙ A
33 7 1 gaorber ˙ G GrpAct Y ˙ Er Y
34 2 33 syl φ ˙ Er Y
35 34 adantr φ A Z ˙ Er Y
36 19 simpld φ A Z A Y
37 35 36 erref φ A Z A ˙ A
38 elecg A Z A Z A A ˙ A ˙ A
39 9 38 sylancom φ A Z A A ˙ A ˙ A
40 37 39 mpbird φ A Z A A ˙
41 40 snssd φ A Z A A ˙
42 32 41 eqssd φ A Z A ˙ = A