| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2a.m | ⊢ ( 𝜑  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 3 |  | sylow2a.p | ⊢ ( 𝜑  →  𝑃  pGrp  𝐺 ) | 
						
							| 4 |  | sylow2a.f | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 5 |  | sylow2a.y | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 6 |  | sylow2a.z | ⊢ 𝑍  =  { 𝑢  ∈  𝑌  ∣  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑢 )  =  𝑢 } | 
						
							| 7 |  | sylow2a.r | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝑌  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 8 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  𝐴  ∈  𝑍 ) | 
						
							| 10 |  | elecg | ⊢ ( ( 𝑤  ∈  V  ∧  𝐴  ∈  𝑍 )  →  ( 𝑤  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝑤 ) ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝑤  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝑤 ) ) | 
						
							| 12 | 7 | gaorb | ⊢ ( 𝐴  ∼  𝑤  ↔  ( 𝐴  ∈  𝑌  ∧  𝑤  ∈  𝑌  ∧  ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝐴 )  =  𝑤 ) ) | 
						
							| 13 | 12 | simp3bi | ⊢ ( 𝐴  ∼  𝑤  →  ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝐴 )  =  𝑤 ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑢  =  𝐴  →  ( ℎ  ⊕  𝑢 )  =  ( ℎ  ⊕  𝐴 ) ) | 
						
							| 15 |  | id | ⊢ ( 𝑢  =  𝐴  →  𝑢  =  𝐴 ) | 
						
							| 16 | 14 15 | eqeq12d | ⊢ ( 𝑢  =  𝐴  →  ( ( ℎ  ⊕  𝑢 )  =  𝑢  ↔  ( ℎ  ⊕  𝐴 )  =  𝐴 ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑢  =  𝐴  →  ( ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑢 )  =  𝑢  ↔  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  𝐴 ) ) | 
						
							| 18 | 17 6 | elrab2 | ⊢ ( 𝐴  ∈  𝑍  ↔  ( 𝐴  ∈  𝑌  ∧  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  𝐴 ) ) | 
						
							| 19 | 9 18 | sylib | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝐴  ∈  𝑌  ∧  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  𝐴 ) ) | 
						
							| 20 | 19 | simprd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  𝐴 ) | 
						
							| 21 |  | oveq1 | ⊢ ( ℎ  =  𝑘  →  ( ℎ  ⊕  𝐴 )  =  ( 𝑘  ⊕  𝐴 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( ℎ  =  𝑘  →  ( ( ℎ  ⊕  𝐴 )  =  𝐴  ↔  ( 𝑘  ⊕  𝐴 )  =  𝐴 ) ) | 
						
							| 23 | 22 | rspccva | ⊢ ( ( ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝐴 )  =  𝐴  ∧  𝑘  ∈  𝑋 )  →  ( 𝑘  ⊕  𝐴 )  =  𝐴 ) | 
						
							| 24 | 20 23 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑘  ⊕  𝐴 )  =  𝐴 ) | 
						
							| 25 |  | eqeq1 | ⊢ ( ( 𝑘  ⊕  𝐴 )  =  𝑤  →  ( ( 𝑘  ⊕  𝐴 )  =  𝐴  ↔  𝑤  =  𝐴 ) ) | 
						
							| 26 | 24 25 | syl5ibcom | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝑘  ⊕  𝐴 )  =  𝑤  →  𝑤  =  𝐴 ) ) | 
						
							| 27 | 26 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( ∃ 𝑘  ∈  𝑋 ( 𝑘  ⊕  𝐴 )  =  𝑤  →  𝑤  =  𝐴 ) ) | 
						
							| 28 | 13 27 | syl5 | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝐴  ∼  𝑤  →  𝑤  =  𝐴 ) ) | 
						
							| 29 | 11 28 | sylbid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝑤  ∈  [ 𝐴 ]  ∼   →  𝑤  =  𝐴 ) ) | 
						
							| 30 |  | velsn | ⊢ ( 𝑤  ∈  { 𝐴 }  ↔  𝑤  =  𝐴 ) | 
						
							| 31 | 29 30 | imbitrrdi | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝑤  ∈  [ 𝐴 ]  ∼   →  𝑤  ∈  { 𝐴 } ) ) | 
						
							| 32 | 31 | ssrdv | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  [ 𝐴 ]  ∼   ⊆  { 𝐴 } ) | 
						
							| 33 | 7 1 | gaorber | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ∼   Er  𝑌 ) | 
						
							| 34 | 2 33 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑌 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →   ∼   Er  𝑌 ) | 
						
							| 36 | 19 | simpld | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  𝐴  ∈  𝑌 ) | 
						
							| 37 | 35 36 | erref | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  𝐴  ∼  𝐴 ) | 
						
							| 38 |  | elecg | ⊢ ( ( 𝐴  ∈  𝑍  ∧  𝐴  ∈  𝑍 )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) ) | 
						
							| 39 | 9 38 | sylancom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) ) | 
						
							| 40 | 37 39 | mpbird | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  𝐴  ∈  [ 𝐴 ]  ∼  ) | 
						
							| 41 | 40 | snssd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  { 𝐴 }  ⊆  [ 𝐴 ]  ∼  ) | 
						
							| 42 | 32 41 | eqssd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑍 )  →  [ 𝐴 ]  ∼   =  { 𝐴 } ) |