Metamath Proof Explorer


Theorem sylow2alem1

Description: Lemma for sylow2a . An equivalence class of fixed points is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2a.x 𝑋 = ( Base ‘ 𝐺 )
sylow2a.m ( 𝜑 ∈ ( 𝐺 GrpAct 𝑌 ) )
sylow2a.p ( 𝜑𝑃 pGrp 𝐺 )
sylow2a.f ( 𝜑𝑋 ∈ Fin )
sylow2a.y ( 𝜑𝑌 ∈ Fin )
sylow2a.z 𝑍 = { 𝑢𝑌 ∣ ∀ 𝑋 ( 𝑢 ) = 𝑢 }
sylow2a.r = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
Assertion sylow2alem1 ( ( 𝜑𝐴𝑍 ) → [ 𝐴 ] = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 sylow2a.x 𝑋 = ( Base ‘ 𝐺 )
2 sylow2a.m ( 𝜑 ∈ ( 𝐺 GrpAct 𝑌 ) )
3 sylow2a.p ( 𝜑𝑃 pGrp 𝐺 )
4 sylow2a.f ( 𝜑𝑋 ∈ Fin )
5 sylow2a.y ( 𝜑𝑌 ∈ Fin )
6 sylow2a.z 𝑍 = { 𝑢𝑌 ∣ ∀ 𝑋 ( 𝑢 ) = 𝑢 }
7 sylow2a.r = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
8 vex 𝑤 ∈ V
9 simpr ( ( 𝜑𝐴𝑍 ) → 𝐴𝑍 )
10 elecg ( ( 𝑤 ∈ V ∧ 𝐴𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] 𝐴 𝑤 ) )
11 8 9 10 sylancr ( ( 𝜑𝐴𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] 𝐴 𝑤 ) )
12 7 gaorb ( 𝐴 𝑤 ↔ ( 𝐴𝑌𝑤𝑌 ∧ ∃ 𝑘𝑋 ( 𝑘 𝐴 ) = 𝑤 ) )
13 12 simp3bi ( 𝐴 𝑤 → ∃ 𝑘𝑋 ( 𝑘 𝐴 ) = 𝑤 )
14 oveq2 ( 𝑢 = 𝐴 → ( 𝑢 ) = ( 𝐴 ) )
15 id ( 𝑢 = 𝐴𝑢 = 𝐴 )
16 14 15 eqeq12d ( 𝑢 = 𝐴 → ( ( 𝑢 ) = 𝑢 ↔ ( 𝐴 ) = 𝐴 ) )
17 16 ralbidv ( 𝑢 = 𝐴 → ( ∀ 𝑋 ( 𝑢 ) = 𝑢 ↔ ∀ 𝑋 ( 𝐴 ) = 𝐴 ) )
18 17 6 elrab2 ( 𝐴𝑍 ↔ ( 𝐴𝑌 ∧ ∀ 𝑋 ( 𝐴 ) = 𝐴 ) )
19 9 18 sylib ( ( 𝜑𝐴𝑍 ) → ( 𝐴𝑌 ∧ ∀ 𝑋 ( 𝐴 ) = 𝐴 ) )
20 19 simprd ( ( 𝜑𝐴𝑍 ) → ∀ 𝑋 ( 𝐴 ) = 𝐴 )
21 oveq1 ( = 𝑘 → ( 𝐴 ) = ( 𝑘 𝐴 ) )
22 21 eqeq1d ( = 𝑘 → ( ( 𝐴 ) = 𝐴 ↔ ( 𝑘 𝐴 ) = 𝐴 ) )
23 22 rspccva ( ( ∀ 𝑋 ( 𝐴 ) = 𝐴𝑘𝑋 ) → ( 𝑘 𝐴 ) = 𝐴 )
24 20 23 sylan ( ( ( 𝜑𝐴𝑍 ) ∧ 𝑘𝑋 ) → ( 𝑘 𝐴 ) = 𝐴 )
25 eqeq1 ( ( 𝑘 𝐴 ) = 𝑤 → ( ( 𝑘 𝐴 ) = 𝐴𝑤 = 𝐴 ) )
26 24 25 syl5ibcom ( ( ( 𝜑𝐴𝑍 ) ∧ 𝑘𝑋 ) → ( ( 𝑘 𝐴 ) = 𝑤𝑤 = 𝐴 ) )
27 26 rexlimdva ( ( 𝜑𝐴𝑍 ) → ( ∃ 𝑘𝑋 ( 𝑘 𝐴 ) = 𝑤𝑤 = 𝐴 ) )
28 13 27 syl5 ( ( 𝜑𝐴𝑍 ) → ( 𝐴 𝑤𝑤 = 𝐴 ) )
29 11 28 sylbid ( ( 𝜑𝐴𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] 𝑤 = 𝐴 ) )
30 velsn ( 𝑤 ∈ { 𝐴 } ↔ 𝑤 = 𝐴 )
31 29 30 syl6ibr ( ( 𝜑𝐴𝑍 ) → ( 𝑤 ∈ [ 𝐴 ] 𝑤 ∈ { 𝐴 } ) )
32 31 ssrdv ( ( 𝜑𝐴𝑍 ) → [ 𝐴 ] ⊆ { 𝐴 } )
33 7 1 gaorber ( ∈ ( 𝐺 GrpAct 𝑌 ) → Er 𝑌 )
34 2 33 syl ( 𝜑 Er 𝑌 )
35 34 adantr ( ( 𝜑𝐴𝑍 ) → Er 𝑌 )
36 19 simpld ( ( 𝜑𝐴𝑍 ) → 𝐴𝑌 )
37 35 36 erref ( ( 𝜑𝐴𝑍 ) → 𝐴 𝐴 )
38 elecg ( ( 𝐴𝑍𝐴𝑍 ) → ( 𝐴 ∈ [ 𝐴 ] 𝐴 𝐴 ) )
39 9 38 sylancom ( ( 𝜑𝐴𝑍 ) → ( 𝐴 ∈ [ 𝐴 ] 𝐴 𝐴 ) )
40 37 39 mpbird ( ( 𝜑𝐴𝑍 ) → 𝐴 ∈ [ 𝐴 ] )
41 40 snssd ( ( 𝜑𝐴𝑍 ) → { 𝐴 } ⊆ [ 𝐴 ] )
42 32 41 eqssd ( ( 𝜑𝐴𝑍 ) → [ 𝐴 ] = { 𝐴 } )