| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumdvds.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
fsumdvds.2 |
|- ( ph -> N e. ZZ ) |
| 3 |
|
fsumdvds.3 |
|- ( ( ph /\ k e. A ) -> B e. ZZ ) |
| 4 |
|
fsumdvds.4 |
|- ( ( ph /\ k e. A ) -> N || B ) |
| 5 |
|
0z |
|- 0 e. ZZ |
| 6 |
|
dvds0 |
|- ( 0 e. ZZ -> 0 || 0 ) |
| 7 |
5 6
|
mp1i |
|- ( ( ph /\ N = 0 ) -> 0 || 0 ) |
| 8 |
|
simpr |
|- ( ( ph /\ N = 0 ) -> N = 0 ) |
| 9 |
|
simplr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N = 0 ) |
| 10 |
4
|
adantlr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N || B ) |
| 11 |
9 10
|
eqbrtrrd |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> 0 || B ) |
| 12 |
3
|
adantlr |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B e. ZZ ) |
| 13 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
| 14 |
12 13
|
syl |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> ( 0 || B <-> B = 0 ) ) |
| 15 |
11 14
|
mpbid |
|- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B = 0 ) |
| 16 |
15
|
sumeq2dv |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A B = sum_ k e. A 0 ) |
| 17 |
1
|
adantr |
|- ( ( ph /\ N = 0 ) -> A e. Fin ) |
| 18 |
17
|
olcd |
|- ( ( ph /\ N = 0 ) -> ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) ) |
| 19 |
|
sumz |
|- ( ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A 0 = 0 ) |
| 21 |
16 20
|
eqtrd |
|- ( ( ph /\ N = 0 ) -> sum_ k e. A B = 0 ) |
| 22 |
7 8 21
|
3brtr4d |
|- ( ( ph /\ N = 0 ) -> N || sum_ k e. A B ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> A e. Fin ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> N e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( ( ph /\ N =/= 0 ) -> N e. CC ) |
| 26 |
3
|
adantlr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. ZZ ) |
| 27 |
26
|
zcnd |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. CC ) |
| 28 |
|
simpr |
|- ( ( ph /\ N =/= 0 ) -> N =/= 0 ) |
| 29 |
23 25 27 28
|
fsumdivc |
|- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) = sum_ k e. A ( B / N ) ) |
| 30 |
4
|
adantlr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N || B ) |
| 31 |
24
|
adantr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N e. ZZ ) |
| 32 |
|
simplr |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N =/= 0 ) |
| 33 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ B e. ZZ ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
| 34 |
31 32 26 33
|
syl3anc |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
| 35 |
30 34
|
mpbid |
|- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( B / N ) e. ZZ ) |
| 36 |
23 35
|
fsumzcl |
|- ( ( ph /\ N =/= 0 ) -> sum_ k e. A ( B / N ) e. ZZ ) |
| 37 |
29 36
|
eqeltrd |
|- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) e. ZZ ) |
| 38 |
1 3
|
fsumzcl |
|- ( ph -> sum_ k e. A B e. ZZ ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ N =/= 0 ) -> sum_ k e. A B e. ZZ ) |
| 40 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ sum_ k e. A B e. ZZ ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
| 41 |
24 28 39 40
|
syl3anc |
|- ( ( ph /\ N =/= 0 ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
| 42 |
37 41
|
mpbird |
|- ( ( ph /\ N =/= 0 ) -> N || sum_ k e. A B ) |
| 43 |
22 42
|
pm2.61dane |
|- ( ph -> N || sum_ k e. A B ) |