Description: Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smu01 | |- ( A C_ NN0 -> ( A smul (/) ) = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | |- ( A C_ NN0 -> A C_ NN0 ) | |
| 2 | 0ss | |- (/) C_ NN0 | |
| 3 | 2 | a1i | |- ( A C_ NN0 -> (/) C_ NN0 ) | 
| 4 | noel | |- -. ( n - k ) e. (/) | |
| 5 | 4 | intnan | |- -. ( k e. A /\ ( n - k ) e. (/) ) | 
| 6 | 5 | a1i | |- ( ( A C_ NN0 /\ ( k e. NN0 /\ n e. NN0 ) ) -> -. ( k e. A /\ ( n - k ) e. (/) ) ) | 
| 7 | 1 3 6 | smu01lem | |- ( A C_ NN0 -> ( A smul (/) ) = (/) ) |