Metamath Proof Explorer


Theorem sn-iotaval

Description: iotaval without ax-10 , ax-11 , ax-12 . (Contributed by SN, 23-Nov-2024)

Ref Expression
Assertion sn-iotaval
|- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y )

Proof

Step Hyp Ref Expression
1 abbi1sn
 |-  ( A. x ( ph <-> x = y ) -> { x | ph } = { y } )
2 iotavallem
 |-  ( { x | ph } = { y } -> ( iota x ph ) = y )
3 1 2 syl
 |-  ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y )