Description: suprcld without ax-mulcom , proven trivially from sn-sup3d . (Contributed by SN, 29-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sn-sup3d.1 | |- ( ph -> A C_ RR ) | |
| sn-sup3d.2 | |- ( ph -> A =/= (/) ) | ||
| sn-sup3d.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) | ||
| Assertion | sn-suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sn-sup3d.1 | |- ( ph -> A C_ RR ) | |
| 2 | sn-sup3d.2 | |- ( ph -> A =/= (/) ) | |
| 3 | sn-sup3d.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) | |
| 4 | ltso | |- < Or RR | |
| 5 | 4 | a1i | |- ( ph -> < Or RR ) | 
| 6 | 1 2 3 | sn-sup3d | |- ( ph -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) | 
| 7 | 5 6 | supcl | |- ( ph -> sup ( A , RR , < ) e. RR ) |