Description: suprcld without ax-mulcom , proven trivially from sn-sup3d . (Contributed by SN, 29-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sn-sup3d.1 | |- ( ph -> A C_ RR ) |
|
sn-sup3d.2 | |- ( ph -> A =/= (/) ) |
||
sn-sup3d.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
Assertion | sn-suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sn-sup3d.1 | |- ( ph -> A C_ RR ) |
|
2 | sn-sup3d.2 | |- ( ph -> A =/= (/) ) |
|
3 | sn-sup3d.3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
4 | ltso | |- < Or RR |
|
5 | 4 | a1i | |- ( ph -> < Or RR ) |
6 | 1 2 3 | sn-sup3d | |- ( ph -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) |
7 | 5 6 | supcl | |- ( ph -> sup ( A , RR , < ) e. RR ) |