Metamath Proof Explorer


Theorem sn-suprcld

Description: suprcld without ax-mulcom , proven trivially from sn-sup3d . (Contributed by SN, 29-Jun-2025)

Ref Expression
Hypotheses sn-sup3d.1
|- ( ph -> A C_ RR )
sn-sup3d.2
|- ( ph -> A =/= (/) )
sn-sup3d.3
|- ( ph -> E. x e. RR A. y e. A y <_ x )
Assertion sn-suprcld
|- ( ph -> sup ( A , RR , < ) e. RR )

Proof

Step Hyp Ref Expression
1 sn-sup3d.1
 |-  ( ph -> A C_ RR )
2 sn-sup3d.2
 |-  ( ph -> A =/= (/) )
3 sn-sup3d.3
 |-  ( ph -> E. x e. RR A. y e. A y <_ x )
4 ltso
 |-  < Or RR
5 4 a1i
 |-  ( ph -> < Or RR )
6 1 2 3 sn-sup3d
 |-  ( ph -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) )
7 5 6 supcl
 |-  ( ph -> sup ( A , RR , < ) e. RR )