| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn-sup3d.1 |  |-  ( ph -> A C_ RR ) | 
						
							| 2 |  | sn-sup3d.2 |  |-  ( ph -> A =/= (/) ) | 
						
							| 3 |  | sn-sup3d.3 |  |-  ( ph -> E. x e. RR A. y e. A y <_ x ) | 
						
							| 4 |  | sn-suprubd.4 |  |-  ( ph -> B e. A ) | 
						
							| 5 | 1 4 | sseldd |  |-  ( ph -> B e. RR ) | 
						
							| 6 | 1 2 3 | sn-suprcld |  |-  ( ph -> sup ( A , RR , < ) e. RR ) | 
						
							| 7 |  | ltso |  |-  < Or RR | 
						
							| 8 | 7 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 9 | 1 2 3 | sn-sup3d |  |-  ( ph -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) | 
						
							| 10 | 8 9 | supub |  |-  ( ph -> ( B e. A -> -. sup ( A , RR , < ) < B ) ) | 
						
							| 11 | 4 10 | mpd |  |-  ( ph -> -. sup ( A , RR , < ) < B ) | 
						
							| 12 | 5 6 11 | nltled |  |-  ( ph -> B <_ sup ( A , RR , < ) ) |