Step |
Hyp |
Ref |
Expression |
1 |
|
sn-sup3d.1 |
|- ( ph -> A C_ RR ) |
2 |
|
sn-sup3d.2 |
|- ( ph -> A =/= (/) ) |
3 |
|
sn-sup3d.3 |
|- ( ph -> E. x e. RR A. y e. A y <_ x ) |
4 |
|
sn-suprubd.4 |
|- ( ph -> B e. A ) |
5 |
1 4
|
sseldd |
|- ( ph -> B e. RR ) |
6 |
1 2 3
|
sn-suprcld |
|- ( ph -> sup ( A , RR , < ) e. RR ) |
7 |
|
ltso |
|- < Or RR |
8 |
7
|
a1i |
|- ( ph -> < Or RR ) |
9 |
1 2 3
|
sn-sup3d |
|- ( ph -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) |
10 |
8 9
|
supub |
|- ( ph -> ( B e. A -> -. sup ( A , RR , < ) < B ) ) |
11 |
4 10
|
mpd |
|- ( ph -> -. sup ( A , RR , < ) < B ) |
12 |
5 6 11
|
nltled |
|- ( ph -> B <_ sup ( A , RR , < ) ) |