| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn-sup3d.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | sn-sup3d.2 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 3 |  | sn-sup3d.3 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) | 
						
							| 4 |  | sn-suprubd.4 | ⊢ ( 𝜑  →  𝐵  ∈  𝐴 ) | 
						
							| 5 | 1 4 | sseldd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 1 2 3 | sn-suprcld | ⊢ ( 𝜑  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 7 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 9 | 1 2 3 | sn-sup3d | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 10 | 8 9 | supub | ⊢ ( 𝜑  →  ( 𝐵  ∈  𝐴  →  ¬  sup ( 𝐴 ,  ℝ ,   <  )  <  𝐵 ) ) | 
						
							| 11 | 4 10 | mpd | ⊢ ( 𝜑  →  ¬  sup ( 𝐴 ,  ℝ ,   <  )  <  𝐵 ) | 
						
							| 12 | 5 6 11 | nltled | ⊢ ( 𝜑  →  𝐵  ≤  sup ( 𝐴 ,  ℝ ,   <  ) ) |