| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn-sup3d.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
sn-sup3d.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 3 |
|
sn-sup3d.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 4 |
|
sn-suprubd.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
| 5 |
1 4
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 6 |
1 2 3
|
sn-suprcld |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 7 |
|
ltso |
⊢ < Or ℝ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 9 |
1 2 3
|
sn-sup3d |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 10 |
8 9
|
supub |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐴 → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 ) ) |
| 11 |
4 10
|
mpd |
⊢ ( 𝜑 → ¬ sup ( 𝐴 , ℝ , < ) < 𝐵 ) |
| 12 |
5 6 11
|
nltled |
⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |