Metamath Proof Explorer


Theorem sn-suprubd

Description: suprubd without ax-mulcom , proven trivially from sn-suprcld . (Contributed by SN, 29-Jun-2025)

Ref Expression
Hypotheses sn-sup3d.1 φ A
sn-sup3d.2 φ A
sn-sup3d.3 φ x y A y x
sn-suprubd.4 φ B A
Assertion sn-suprubd φ B sup A <

Proof

Step Hyp Ref Expression
1 sn-sup3d.1 φ A
2 sn-sup3d.2 φ A
3 sn-sup3d.3 φ x y A y x
4 sn-suprubd.4 φ B A
5 1 4 sseldd φ B
6 1 2 3 sn-suprcld φ sup A <
7 ltso < Or
8 7 a1i φ < Or
9 1 2 3 sn-sup3d φ x y A ¬ x < y y y < x z A y < z
10 8 9 supub φ B A ¬ sup A < < B
11 4 10 mpd φ ¬ sup A < < B
12 5 6 11 nltled φ B sup A <