Step |
Hyp |
Ref |
Expression |
1 |
|
sn-sup3d.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
sn-sup3d.2 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
3 |
|
sn-sup3d.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
5 |
|
leloe |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
6 |
5
|
expcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝑦 ∈ ℝ → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) ) |
7 |
4 6
|
syl9 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) ) ) |
8 |
7
|
imp31 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
9 |
8
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
10 |
9
|
rexbidva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
12 |
3 11
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) |
13 |
|
sn-sup2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
14 |
1 2 12 13
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |