| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sn-sup3d.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | sn-sup3d.2 | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) | 
						
							| 3 |  | sn-sup3d.3 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) | 
						
							| 4 |  | ssel | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ℝ ) ) | 
						
							| 5 |  | leloe | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑦  ≤  𝑥  ↔  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 6 | 5 | expcom | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑦  ∈  ℝ  →  ( 𝑦  ≤  𝑥  ↔  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) ) | 
						
							| 7 | 4 6 | syl9 | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑥  ∈  ℝ  →  ( 𝑦  ∈  𝐴  →  ( 𝑦  ≤  𝑥  ↔  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) ) ) | 
						
							| 8 | 7 | imp31 | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ≤  𝑥  ↔  ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 9 | 8 | ralbidva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 10 | 9 | rexbidva | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) ) | 
						
							| 12 | 3 11 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) ) | 
						
							| 13 |  | sn-sup2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 ( 𝑦  <  𝑥  ∨  𝑦  =  𝑥 ) )  →  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 14 | 1 2 12 13 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) |