Step |
Hyp |
Ref |
Expression |
1 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑥 + 1 ) ∈ ℝ ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑥 + 1 ) ∈ ℝ ) ) |
4 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) |
5 |
|
sn-ltp1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) |
6 |
1
|
ancli |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) ) |
7 |
|
lttr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
8 |
7
|
3expb |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
10 |
5 9
|
sylan2i |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 ∈ ℝ ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
11 |
10
|
exp4b |
⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → ( 𝑥 ∈ ℝ → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
12 |
11
|
com34 |
⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
13 |
12
|
pm2.43d |
⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
14 |
13
|
imp |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 < ( 𝑥 + 1 ) ↔ 𝑥 < ( 𝑥 + 1 ) ) ) |
16 |
5 15
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝑦 = 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 = 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
18 |
14 17
|
jaod |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
19 |
18
|
ex |
⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
20 |
4 19
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ ℝ → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
21 |
20
|
com23 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
22 |
21
|
imp |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
23 |
22
|
a2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑦 ∈ 𝐴 → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
24 |
23
|
ralimdv2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
25 |
24
|
expimpd |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
26 |
3 25
|
jcad |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) ) |
27 |
|
ovex |
⊢ ( 𝑥 + 1 ) ∈ V |
28 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( 𝑧 ∈ ℝ ↔ ( 𝑥 + 1 ) ∈ ℝ ) ) |
29 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < ( 𝑥 + 1 ) ) ) |
30 |
29
|
ralbidv |
⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
31 |
28 30
|
anbi12d |
⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) ) |
32 |
27 31
|
spcev |
⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) |
33 |
26 32
|
syl6 |
⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
34 |
33
|
exlimdv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
35 |
|
eleq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ ) ) |
36 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝑥 ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
38 |
35 37
|
anbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
39 |
38
|
cbvexvw |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
40 |
34 39
|
syl6ib |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
41 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
42 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
43 |
40 41 42
|
3imtr4g |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
45 |
44
|
imdistani |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
46 |
|
df-3an |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ↔ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
47 |
|
df-3an |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ↔ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
48 |
45 46 47
|
3imtr4i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
49 |
|
axsup |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |