Metamath Proof Explorer


Theorem snjust

Description: Soundness justification theorem for df-sn . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion snjust
|- { x | x = A } = { y | y = A }

Proof

Step Hyp Ref Expression
1 eqeq1
 |-  ( x = z -> ( x = A <-> z = A ) )
2 1 cbvabv
 |-  { x | x = A } = { z | z = A }
3 eqeq1
 |-  ( z = y -> ( z = A <-> y = A ) )
4 3 cbvabv
 |-  { z | z = A } = { y | y = A }
5 2 4 eqtri
 |-  { x | x = A } = { y | y = A }