Metamath Proof Explorer


Theorem snjust

Description: Soundness justification theorem for df-sn . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion snjust { 𝑥𝑥 = 𝐴 } = { 𝑦𝑦 = 𝐴 }

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴𝑧 = 𝐴 ) )
2 1 cbvabv { 𝑥𝑥 = 𝐴 } = { 𝑧𝑧 = 𝐴 }
3 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = 𝐴𝑦 = 𝐴 ) )
4 3 cbvabv { 𝑧𝑧 = 𝐴 } = { 𝑦𝑦 = 𝐴 }
5 2 4 eqtri { 𝑥𝑥 = 𝐴 } = { 𝑦𝑦 = 𝐴 }