Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | so0 | |- R Or (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | po0 | |- R Po (/) |
|
2 | ral0 | |- A. x e. (/) A. y e. (/) ( x R y \/ x = y \/ y R x ) |
|
3 | df-so | |- ( R Or (/) <-> ( R Po (/) /\ A. x e. (/) A. y e. (/) ( x R y \/ x = y \/ y R x ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- R Or (/) |