Metamath Proof Explorer


Theorem spALT

Description: sp can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023) (Proof modification is discouraged.) Use sp instead. (New usage is discouraged.)

Ref Expression
Assertion spALT
|- ( A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( A. x ph -> ( x = y -> A. x ph ) )
2 1 axc4i
 |-  ( A. x ph -> A. x ( x = y -> A. x ph ) )
3 axc10
 |-  ( A. x ( x = y -> A. x ph ) -> ph )
4 2 3 syl
 |-  ( A. x ph -> ph )