Description: A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spsbcdi.1 | |- A e. _V |
|
| spsbcdi.2 | |- ( ph -> A. x ch ) |
||
| spsbcdi.3 | |- ( [. A / x ]. ch <-> ps ) |
||
| Assertion | spsbcdi | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbcdi.1 | |- A e. _V |
|
| 2 | spsbcdi.2 | |- ( ph -> A. x ch ) |
|
| 3 | spsbcdi.3 | |- ( [. A / x ]. ch <-> ps ) |
|
| 4 | 1 | a1i | |- ( ph -> A e. _V ) |
| 5 | 4 2 | spsbcd | |- ( ph -> [. A / x ]. ch ) |
| 6 | 5 3 | sylib | |- ( ph -> ps ) |