Metamath Proof Explorer


Theorem spsbcdi

Description: A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses spsbcdi.1
|- A e. _V
spsbcdi.2
|- ( ph -> A. x ch )
spsbcdi.3
|- ( [. A / x ]. ch <-> ps )
Assertion spsbcdi
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 spsbcdi.1
 |-  A e. _V
2 spsbcdi.2
 |-  ( ph -> A. x ch )
3 spsbcdi.3
 |-  ( [. A / x ]. ch <-> ps )
4 1 a1i
 |-  ( ph -> A e. _V )
5 4 2 spsbcd
 |-  ( ph -> [. A / x ]. ch )
6 5 3 sylib
 |-  ( ph -> ps )