Metamath Proof Explorer
Description: A lemma for eliminating a universal quantifier, in inference form.
(Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
spsbcdi.1 |
|
|
|
spsbcdi.2 |
|
|
|
spsbcdi.3 |
|
|
Assertion |
spsbcdi |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spsbcdi.1 |
|
| 2 |
|
spsbcdi.2 |
|
| 3 |
|
spsbcdi.3 |
|
| 4 |
1
|
a1i |
|
| 5 |
4 2
|
spsbcd |
|
| 6 |
5 3
|
sylib |
|