Metamath Proof Explorer
Description: A lemma for introducing a universal quantifier, in inference form.
(Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
alrimii.1 |
|
|
|
alrimii.2 |
|
|
|
alrimii.3 |
|
|
|
alrimii.4 |
|
|
Assertion |
alrimii |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alrimii.1 |
|
| 2 |
|
alrimii.2 |
|
| 3 |
|
alrimii.3 |
|
| 4 |
|
alrimii.4 |
|
| 5 |
2 3
|
sylibr |
|
| 6 |
1 5
|
alrimi |
|
| 7 |
|
nfsbc1v |
|
| 8 |
|
sbceq2a |
|
| 9 |
7 4 8
|
cbvalv1 |
|
| 10 |
6 9
|
sylib |
|