Metamath Proof Explorer
Description: A lemma for introducing a universal quantifier, in inference form.
(Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
alrimii.1 |
⊢ Ⅎ 𝑦 𝜑 |
|
|
alrimii.2 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
alrimii.3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜓 ) |
|
|
alrimii.4 |
⊢ Ⅎ 𝑦 𝜒 |
|
Assertion |
alrimii |
⊢ ( 𝜑 → ∀ 𝑥 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alrimii.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
alrimii.2 |
⊢ ( 𝜑 → 𝜓 ) |
3 |
|
alrimii.3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜓 ) |
4 |
|
alrimii.4 |
⊢ Ⅎ 𝑦 𝜒 |
5 |
2 3
|
sylibr |
⊢ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜒 ) |
6 |
1 5
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜒 ) |
7 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜒 |
8 |
|
sbceq2a |
⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝜒 ) ) |
9 |
7 4 8
|
cbvalv1 |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜒 ↔ ∀ 𝑥 𝜒 ) |
10 |
6 9
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 𝜒 ) |