Metamath Proof Explorer


Theorem alrimii

Description: A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses alrimii.1 𝑦 𝜑
alrimii.2 ( 𝜑𝜓 )
alrimii.3 ( [ 𝑦 / 𝑥 ] 𝜒𝜓 )
alrimii.4 𝑦 𝜒
Assertion alrimii ( 𝜑 → ∀ 𝑥 𝜒 )

Proof

Step Hyp Ref Expression
1 alrimii.1 𝑦 𝜑
2 alrimii.2 ( 𝜑𝜓 )
3 alrimii.3 ( [ 𝑦 / 𝑥 ] 𝜒𝜓 )
4 alrimii.4 𝑦 𝜒
5 2 3 sylibr ( 𝜑[ 𝑦 / 𝑥 ] 𝜒 )
6 1 5 alrimi ( 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜒 )
7 nfsbc1v 𝑥 [ 𝑦 / 𝑥 ] 𝜒
8 sbceq2a ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] 𝜒𝜒 ) )
9 7 4 8 cbvalv1 ( ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜒 ↔ ∀ 𝑥 𝜒 )
10 6 9 sylib ( 𝜑 → ∀ 𝑥 𝜒 )