Metamath Proof Explorer
Description: A lemma for introducing an existential quantifier, in inference form.
(Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
spesbcdi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
spesbcdi.2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜒 ↔ 𝜓 ) |
|
Assertion |
spesbcdi |
⊢ ( 𝜑 → ∃ 𝑥 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spesbcdi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
spesbcdi.2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝜒 ↔ 𝜓 ) |
3 |
1 2
|
sylibr |
⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜒 ) |
4 |
3
|
spesbcd |
⊢ ( 𝜑 → ∃ 𝑥 𝜒 ) |