Metamath Proof Explorer


Theorem spesbcdi

Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses spesbcdi.1 ( 𝜑𝜓 )
spesbcdi.2 ( [ 𝐴 / 𝑥 ] 𝜒𝜓 )
Assertion spesbcdi ( 𝜑 → ∃ 𝑥 𝜒 )

Proof

Step Hyp Ref Expression
1 spesbcdi.1 ( 𝜑𝜓 )
2 spesbcdi.2 ( [ 𝐴 / 𝑥 ] 𝜒𝜓 )
3 1 2 sylibr ( 𝜑[ 𝐴 / 𝑥 ] 𝜒 )
4 3 spesbcd ( 𝜑 → ∃ 𝑥 𝜒 )