Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | spesbcdi.1 | |- ( ph -> ps ) |
|
spesbcdi.2 | |- ( [. A / x ]. ch <-> ps ) |
||
Assertion | spesbcdi | |- ( ph -> E. x ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcdi.1 | |- ( ph -> ps ) |
|
2 | spesbcdi.2 | |- ( [. A / x ]. ch <-> ps ) |
|
3 | 1 2 | sylibr | |- ( ph -> [. A / x ]. ch ) |
4 | 3 | spesbcd | |- ( ph -> E. x ch ) |