Metamath Proof Explorer


Theorem spesbcdi

Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses spesbcdi.1
|- ( ph -> ps )
spesbcdi.2
|- ( [. A / x ]. ch <-> ps )
Assertion spesbcdi
|- ( ph -> E. x ch )

Proof

Step Hyp Ref Expression
1 spesbcdi.1
 |-  ( ph -> ps )
2 spesbcdi.2
 |-  ( [. A / x ]. ch <-> ps )
3 1 2 sylibr
 |-  ( ph -> [. A / x ]. ch )
4 3 spesbcd
 |-  ( ph -> E. x ch )