Description: A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spesbcdi.1 | |- ( ph -> ps ) |
|
| spesbcdi.2 | |- ( [. A / x ]. ch <-> ps ) |
||
| Assertion | spesbcdi | |- ( ph -> E. x ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spesbcdi.1 | |- ( ph -> ps ) |
|
| 2 | spesbcdi.2 | |- ( [. A / x ]. ch <-> ps ) |
|
| 3 | 1 2 | sylibr | |- ( ph -> [. A / x ]. ch ) |
| 4 | 3 | spesbcd | |- ( ph -> E. x ch ) |