Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exlimddvf.1 | |- ( ph -> E. x th ) |
|
| exlimddvf.2 | |- F/ x ps |
||
| exlimddvf.3 | |- ( ( th /\ ps ) -> ch ) |
||
| exlimddvf.4 | |- F/ x ch |
||
| Assertion | exlimddvf | |- ( ( ph /\ ps ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddvf.1 | |- ( ph -> E. x th ) |
|
| 2 | exlimddvf.2 | |- F/ x ps |
|
| 3 | exlimddvf.3 | |- ( ( th /\ ps ) -> ch ) |
|
| 4 | exlimddvf.4 | |- F/ x ch |
|
| 5 | 3 | expcom | |- ( ps -> ( th -> ch ) ) |
| 6 | 2 4 5 | exlimd | |- ( ps -> ( E. x th -> ch ) ) |
| 7 | 1 6 | mpan9 | |- ( ( ph /\ ps ) -> ch ) |