Metamath Proof Explorer


Theorem exlimddvf

Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses exlimddvf.1
|- ( ph -> E. x th )
exlimddvf.2
|- F/ x ps
exlimddvf.3
|- ( ( th /\ ps ) -> ch )
exlimddvf.4
|- F/ x ch
Assertion exlimddvf
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 exlimddvf.1
 |-  ( ph -> E. x th )
2 exlimddvf.2
 |-  F/ x ps
3 exlimddvf.3
 |-  ( ( th /\ ps ) -> ch )
4 exlimddvf.4
 |-  F/ x ch
5 3 expcom
 |-  ( ps -> ( th -> ch ) )
6 2 4 5 exlimd
 |-  ( ps -> ( E. x th -> ch ) )
7 1 6 mpan9
 |-  ( ( ph /\ ps ) -> ch )