Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exlimddvf.1 | |- ( ph -> E. x th ) |
|
exlimddvf.2 | |- F/ x ps |
||
exlimddvf.3 | |- ( ( th /\ ps ) -> ch ) |
||
exlimddvf.4 | |- F/ x ch |
||
Assertion | exlimddvf | |- ( ( ph /\ ps ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvf.1 | |- ( ph -> E. x th ) |
|
2 | exlimddvf.2 | |- F/ x ps |
|
3 | exlimddvf.3 | |- ( ( th /\ ps ) -> ch ) |
|
4 | exlimddvf.4 | |- F/ x ch |
|
5 | 3 | expcom | |- ( ps -> ( th -> ch ) ) |
6 | 2 4 5 | exlimd | |- ( ps -> ( E. x th -> ch ) ) |
7 | 1 6 | mpan9 | |- ( ( ph /\ ps ) -> ch ) |