Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exlimddvfi.1 | |- ( ph -> E. x th ) | |
| exlimddvfi.2 | |- F/ y th | ||
| exlimddvfi.3 | |- F/ y ps | ||
| exlimddvfi.4 | |- ( [. y / x ]. th <-> et ) | ||
| exlimddvfi.5 | |- ( ( et /\ ps ) -> ch ) | ||
| exlimddvfi.6 | |- F/ y ch | ||
| Assertion | exlimddvfi | |- ( ( ph /\ ps ) -> ch ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimddvfi.1 | |- ( ph -> E. x th ) | |
| 2 | exlimddvfi.2 | |- F/ y th | |
| 3 | exlimddvfi.3 | |- F/ y ps | |
| 4 | exlimddvfi.4 | |- ( [. y / x ]. th <-> et ) | |
| 5 | exlimddvfi.5 | |- ( ( et /\ ps ) -> ch ) | |
| 6 | exlimddvfi.6 | |- F/ y ch | |
| 7 | 2 | sb8e | |- ( E. x th <-> E. y [ y / x ] th ) | 
| 8 | 1 7 | sylib | |- ( ph -> E. y [ y / x ] th ) | 
| 9 | sbsbc | |- ( [ y / x ] th <-> [. y / x ]. th ) | |
| 10 | 9 4 | bitri | |- ( [ y / x ] th <-> et ) | 
| 11 | 10 5 | sylanb | |- ( ( [ y / x ] th /\ ps ) -> ch ) | 
| 12 | 8 3 11 6 | exlimddvf | |- ( ( ph /\ ps ) -> ch ) |