Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exlimddvfi.1 | |- ( ph -> E. x th ) |
|
exlimddvfi.2 | |- F/ y th |
||
exlimddvfi.3 | |- F/ y ps |
||
exlimddvfi.4 | |- ( [. y / x ]. th <-> et ) |
||
exlimddvfi.5 | |- ( ( et /\ ps ) -> ch ) |
||
exlimddvfi.6 | |- F/ y ch |
||
Assertion | exlimddvfi | |- ( ( ph /\ ps ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvfi.1 | |- ( ph -> E. x th ) |
|
2 | exlimddvfi.2 | |- F/ y th |
|
3 | exlimddvfi.3 | |- F/ y ps |
|
4 | exlimddvfi.4 | |- ( [. y / x ]. th <-> et ) |
|
5 | exlimddvfi.5 | |- ( ( et /\ ps ) -> ch ) |
|
6 | exlimddvfi.6 | |- F/ y ch |
|
7 | 2 | sb8e | |- ( E. x th <-> E. y [ y / x ] th ) |
8 | 1 7 | sylib | |- ( ph -> E. y [ y / x ] th ) |
9 | sbsbc | |- ( [ y / x ] th <-> [. y / x ]. th ) |
|
10 | 9 4 | bitri | |- ( [ y / x ] th <-> et ) |
11 | 10 5 | sylanb | |- ( ( [ y / x ] th /\ ps ) -> ch ) |
12 | 8 3 11 6 | exlimddvf | |- ( ( ph /\ ps ) -> ch ) |