Metamath Proof Explorer


Theorem exlimddvfi

Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses exlimddvfi.1
|- ( ph -> E. x th )
exlimddvfi.2
|- F/ y th
exlimddvfi.3
|- F/ y ps
exlimddvfi.4
|- ( [. y / x ]. th <-> et )
exlimddvfi.5
|- ( ( et /\ ps ) -> ch )
exlimddvfi.6
|- F/ y ch
Assertion exlimddvfi
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 exlimddvfi.1
 |-  ( ph -> E. x th )
2 exlimddvfi.2
 |-  F/ y th
3 exlimddvfi.3
 |-  F/ y ps
4 exlimddvfi.4
 |-  ( [. y / x ]. th <-> et )
5 exlimddvfi.5
 |-  ( ( et /\ ps ) -> ch )
6 exlimddvfi.6
 |-  F/ y ch
7 2 sb8e
 |-  ( E. x th <-> E. y [ y / x ] th )
8 1 7 sylib
 |-  ( ph -> E. y [ y / x ] th )
9 sbsbc
 |-  ( [ y / x ] th <-> [. y / x ]. th )
10 9 4 bitri
 |-  ( [ y / x ] th <-> et )
11 10 5 sylanb
 |-  ( ( [ y / x ] th /\ ps ) -> ch )
12 8 3 11 6 exlimddvf
 |-  ( ( ph /\ ps ) -> ch )