Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbceq1ddi.1 | |- ( ph -> A = B ) | |
| sbceq1ddi.2 | |- ( ps -> th ) | ||
| sbceq1ddi.3 | |- ( [. A / x ]. ch <-> th ) | ||
| sbceq1ddi.4 | |- ( [. B / x ]. ch <-> et ) | ||
| Assertion | sbceq1ddi | |- ( ( ph /\ ps ) -> et ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbceq1ddi.1 | |- ( ph -> A = B ) | |
| 2 | sbceq1ddi.2 | |- ( ps -> th ) | |
| 3 | sbceq1ddi.3 | |- ( [. A / x ]. ch <-> th ) | |
| 4 | sbceq1ddi.4 | |- ( [. B / x ]. ch <-> et ) | |
| 5 | 1 | adantr | |- ( ( ph /\ ps ) -> A = B ) | 
| 6 | 2 3 | sylibr | |- ( ps -> [. A / x ]. ch ) | 
| 7 | 6 | adantl | |- ( ( ph /\ ps ) -> [. A / x ]. ch ) | 
| 8 | 5 7 | sbceq1dd | |- ( ( ph /\ ps ) -> [. B / x ]. ch ) | 
| 9 | 8 4 | sylib | |- ( ( ph /\ ps ) -> et ) |