| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbccom2lem.1 |  |-  A e. _V | 
						
							| 2 |  | sbcan |  |-  ( [. A / x ]. ( y = B /\ ph ) <-> ( [. A / x ]. y = B /\ [. A / x ]. ph ) ) | 
						
							| 3 |  | sbc5 |  |-  ( [. A / x ]. ( y = B /\ ph ) <-> E. x ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 4 | 1 | csbconstgi |  |-  [_ A / x ]_ y = y | 
						
							| 5 |  | eqid |  |-  [_ A / x ]_ B = [_ A / x ]_ B | 
						
							| 6 | 1 4 5 | sbceqi |  |-  ( [. A / x ]. y = B <-> y = [_ A / x ]_ B ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( [. A / x ]. y = B /\ [. A / x ]. ph ) <-> ( y = [_ A / x ]_ B /\ [. A / x ]. ph ) ) | 
						
							| 8 | 2 3 7 | 3bitr3i |  |-  ( E. x ( x = A /\ ( y = B /\ ph ) ) <-> ( y = [_ A / x ]_ B /\ [. A / x ]. ph ) ) | 
						
							| 9 | 8 | exbii |  |-  ( E. y E. x ( x = A /\ ( y = B /\ ph ) ) <-> E. y ( y = [_ A / x ]_ B /\ [. A / x ]. ph ) ) | 
						
							| 10 |  | sbc5 |  |-  ( [. B / y ]. ph <-> E. y ( y = B /\ ph ) ) | 
						
							| 11 | 10 | sbcbii |  |-  ( [. A / x ]. [. B / y ]. ph <-> [. A / x ]. E. y ( y = B /\ ph ) ) | 
						
							| 12 |  | sbc5 |  |-  ( [. A / x ]. E. y ( y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 13 | 11 12 | bitri |  |-  ( [. A / x ]. [. B / y ]. ph <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 14 |  | 19.42v |  |-  ( E. y ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) | 
						
							| 15 | 14 | bicomi |  |-  ( ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 16 | 15 | exbii |  |-  ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. x E. y ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 17 |  | excom |  |-  ( E. x E. y ( x = A /\ ( y = B /\ ph ) ) <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 18 | 16 17 | bitri |  |-  ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 19 | 13 18 | bitri |  |-  ( [. A / x ]. [. B / y ]. ph <-> E. y E. x ( x = A /\ ( y = B /\ ph ) ) ) | 
						
							| 20 |  | sbc5 |  |-  ( [. [_ A / x ]_ B / y ]. [. A / x ]. ph <-> E. y ( y = [_ A / x ]_ B /\ [. A / x ]. ph ) ) | 
						
							| 21 | 9 19 20 | 3bitr4i |  |-  ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph ) |