| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbccom2lem.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 3 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 4 |
1
|
csbconstgi |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 |
| 5 |
|
eqid |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| 6 |
1 4 5
|
sbceqi |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 7 |
6
|
anbi1i |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 8 |
2 3 7
|
3bitr3i |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 10 |
|
sbc5 |
⊢ ( [ 𝐵 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) |
| 11 |
10
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) |
| 12 |
|
sbc5 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 13 |
11 12
|
bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 14 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 15 |
14
|
bicomi |
⊢ ( ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 17 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 18 |
16 17
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 19 |
13 18
|
bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 20 |
|
sbc5 |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 |
9 19 20
|
3bitr4i |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |