| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbccom2lem.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  =  𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 |  | sbc5 | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 4 | 1 | csbconstgi | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 | 
						
							| 5 |  | eqid | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 | 
						
							| 6 | 1 4 5 | sbceqi | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  =  𝐵  ↔  𝑦  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝑦  =  𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 | 2 3 7 | 3bitr3i | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ( 𝑦  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ( 𝑦  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 10 |  | sbc5 | ⊢ ( [ 𝐵  /  𝑦 ] 𝜑  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) | 
						
							| 11 | 10 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) | 
						
							| 12 |  | sbc5 | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 14 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 15 | 14 | bicomi | ⊢ ( ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 17 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 19 | 13 18 | bitri | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 20 |  | sbc5 | ⊢ ( [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ↔  ∃ 𝑦 ( 𝑦  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∧  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 | 9 19 20 | 3bitr4i | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) |