| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbccom2.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbccow |
⊢ ( [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜑 ) |
| 3 |
2
|
bicomi |
⊢ ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 4 |
3
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 5 |
|
sbccow |
⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 6 |
5
|
bicomi |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 7 |
|
vex |
⊢ 𝑧 ∈ V |
| 8 |
7
|
sbccom2lem |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 9 |
8
|
sbcbii |
⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 10 |
4 6 9
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 11 |
1
|
sbccom2lem |
⊢ ( [ 𝐴 / 𝑧 ] [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 12 |
|
sbccow |
⊢ ( [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 13 |
12
|
sbcbii |
⊢ ( [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑧 ] [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 14 |
10 11 13
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 15 |
|
csbcow |
⊢ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| 16 |
|
dfsbcq |
⊢ ( ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → ( [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 17 |
15 16
|
ax-mp |
⊢ ( [ ⦋ 𝐴 / 𝑧 ⦌ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 18 |
14 17
|
bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 19 |
|
sbccom |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 20 |
19
|
sbcbii |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝐴 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 21 |
|
sbccow |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑤 ] [ 𝑤 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
| 22 |
18 20 21
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |