Metamath Proof Explorer


Theorem sbccom2f

Description: Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses sbccom2f.1 𝐴 ∈ V
sbccom2f.2 𝑦 𝐴
Assertion sbccom2f ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbccom2f.1 𝐴 ∈ V
2 sbccom2f.2 𝑦 𝐴
3 sbcco ( [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐵 / 𝑦 ] 𝜑 )
4 3 bicomi ( [ 𝐵 / 𝑦 ] 𝜑[ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 )
5 4 sbcbii ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 ] [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 )
6 1 sbccom2 ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 )
7 vex 𝑧 ∈ V
8 7 sbccom2 ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝑧 / 𝑦 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 )
9 7 2 csbgfi 𝑧 / 𝑦 𝐴 = 𝐴
10 dfsbcq ( 𝑧 / 𝑦 𝐴 = 𝐴 → ( [ 𝑧 / 𝑦 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) )
11 9 10 ax-mp ( [ 𝑧 / 𝑦 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 )
12 8 11 bitri ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 )
13 12 bicomi ( [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
14 13 sbcbii ( [ 𝐴 / 𝑥 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
15 sbcco ( [ 𝐴 / 𝑥 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
16 14 15 bitri ( [ 𝐴 / 𝑥 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
17 5 6 16 3bitri ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )