Step |
Hyp |
Ref |
Expression |
1 |
|
sbccom2f.1 |
⊢ 𝐴 ∈ V |
2 |
|
sbccom2f.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
sbccow |
⊢ ( [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] 𝜑 ) |
4 |
3
|
bicomi |
⊢ ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
5 |
4
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
6 |
1
|
sbccom2 |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
7 |
|
vex |
⊢ 𝑧 ∈ V |
8 |
7
|
sbccom2 |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
9 |
7 2
|
csbgfi |
⊢ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 = 𝐴 |
10 |
|
dfsbcq |
⊢ ( ⦋ 𝑧 / 𝑦 ⦌ 𝐴 = 𝐴 → ( [ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) ) |
11 |
9 10
|
ax-mp |
⊢ ( [ ⦋ 𝑧 / 𝑦 ⦌ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
12 |
8 11
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
13 |
12
|
bicomi |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
14 |
13
|
sbcbii |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
15 |
|
sbccow |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑧 ] [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
16 |
14 15
|
bitri |
⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑧 ] [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |
17 |
5 6 16
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) |