| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbccom2f.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | sbccom2f.2 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 3 |  | sbccow | ⊢ ( [ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝐵  /  𝑦 ] 𝜑 ) | 
						
							| 4 | 3 | bicomi | ⊢ ( [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 5 | 4 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 6 | 1 | sbccom2 | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑧 ] [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 7 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 8 | 7 | sbccom2 | ⊢ ( [ 𝑧  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑦 ⦌ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 9 | 7 2 | csbgfi | ⊢ ⦋ 𝑧  /  𝑦 ⦌ 𝐴  =  𝐴 | 
						
							| 10 |  | dfsbcq | ⊢ ( ⦋ 𝑧  /  𝑦 ⦌ 𝐴  =  𝐴  →  ( [ ⦋ 𝑧  /  𝑦 ⦌ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( [ ⦋ 𝑧  /  𝑦 ⦌ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 12 | 8 11 | bitri | ⊢ ( [ 𝑧  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑 ) | 
						
							| 13 | 12 | bicomi | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ 𝑧  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 14 | 13 | sbcbii | ⊢ ( [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑧 ] [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 15 |  | sbccow | ⊢ ( [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑧 ] [ 𝑧  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑧 ] [ 𝐴  /  𝑥 ] [ 𝑧  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 17 | 5 6 16 | 3bitri | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) |