Metamath Proof Explorer


Theorem sbccom2f

Description: Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses sbccom2f.1
|- A e. _V
sbccom2f.2
|- F/_ y A
Assertion sbccom2f
|- ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph )

Proof

Step Hyp Ref Expression
1 sbccom2f.1
 |-  A e. _V
2 sbccom2f.2
 |-  F/_ y A
3 sbcco
 |-  ( [. B / z ]. [. z / y ]. ph <-> [. B / y ]. ph )
4 3 bicomi
 |-  ( [. B / y ]. ph <-> [. B / z ]. [. z / y ]. ph )
5 4 sbcbii
 |-  ( [. A / x ]. [. B / y ]. ph <-> [. A / x ]. [. B / z ]. [. z / y ]. ph )
6 1 sbccom2
 |-  ( [. A / x ]. [. B / z ]. [. z / y ]. ph <-> [. [_ A / x ]_ B / z ]. [. A / x ]. [. z / y ]. ph )
7 vex
 |-  z e. _V
8 7 sbccom2
 |-  ( [. z / y ]. [. A / x ]. ph <-> [. [_ z / y ]_ A / x ]. [. z / y ]. ph )
9 7 2 csbgfi
 |-  [_ z / y ]_ A = A
10 dfsbcq
 |-  ( [_ z / y ]_ A = A -> ( [. [_ z / y ]_ A / x ]. [. z / y ]. ph <-> [. A / x ]. [. z / y ]. ph ) )
11 9 10 ax-mp
 |-  ( [. [_ z / y ]_ A / x ]. [. z / y ]. ph <-> [. A / x ]. [. z / y ]. ph )
12 8 11 bitri
 |-  ( [. z / y ]. [. A / x ]. ph <-> [. A / x ]. [. z / y ]. ph )
13 12 bicomi
 |-  ( [. A / x ]. [. z / y ]. ph <-> [. z / y ]. [. A / x ]. ph )
14 13 sbcbii
 |-  ( [. [_ A / x ]_ B / z ]. [. A / x ]. [. z / y ]. ph <-> [. [_ A / x ]_ B / z ]. [. z / y ]. [. A / x ]. ph )
15 sbcco
 |-  ( [. [_ A / x ]_ B / z ]. [. z / y ]. [. A / x ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph )
16 14 15 bitri
 |-  ( [. [_ A / x ]_ B / z ]. [. A / x ]. [. z / y ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph )
17 5 6 16 3bitri
 |-  ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph )