Metamath Proof Explorer


Theorem sbccom2fi

Description: Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbccom2fi.1
|- A e. _V
sbccom2fi.2
|- F/_ y A
sbccom2fi.3
|- [_ A / x ]_ B = C
sbccom2fi.4
|- ( [. A / x ]. ph <-> ps )
Assertion sbccom2fi
|- ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ps )

Proof

Step Hyp Ref Expression
1 sbccom2fi.1
 |-  A e. _V
2 sbccom2fi.2
 |-  F/_ y A
3 sbccom2fi.3
 |-  [_ A / x ]_ B = C
4 sbccom2fi.4
 |-  ( [. A / x ]. ph <-> ps )
5 1 2 sbccom2f
 |-  ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. [. A / x ]. ph )
6 dfsbcq
 |-  ( [_ A / x ]_ B = C -> ( [. [_ A / x ]_ B / y ]. [. A / x ]. ph <-> [. C / y ]. [. A / x ]. ph ) )
7 3 6 ax-mp
 |-  ( [. [_ A / x ]_ B / y ]. [. A / x ]. ph <-> [. C / y ]. [. A / x ]. ph )
8 4 sbcbii
 |-  ( [. C / y ]. [. A / x ]. ph <-> [. C / y ]. ps )
9 5 7 8 3bitri
 |-  ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ps )