Description: Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbccom2fi.1 | ⊢ 𝐴 ∈ V | |
| sbccom2fi.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| sbccom2fi.3 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 | ||
| sbccom2fi.4 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) | ||
| Assertion | sbccom2fi | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜓 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbccom2fi.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbccom2fi.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | sbccom2fi.3 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 | |
| 4 | sbccom2fi.4 | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) | |
| 5 | 1 2 | sbccom2f | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) | 
| 6 | dfsbcq | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 7 | 3 6 | ax-mp | ⊢ ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) | 
| 8 | 4 | sbcbii | ⊢ ( [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜓 ) | 
| 9 | 5 7 8 | 3bitri | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜓 ) |