Metamath Proof Explorer


Theorem sbccom2fi

Description: Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbccom2fi.1 𝐴 ∈ V
sbccom2fi.2 𝑦 𝐴
sbccom2fi.3 𝐴 / 𝑥 𝐵 = 𝐶
sbccom2fi.4 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
Assertion sbccom2fi ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐶 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 sbccom2fi.1 𝐴 ∈ V
2 sbccom2fi.2 𝑦 𝐴
3 sbccom2fi.3 𝐴 / 𝑥 𝐵 = 𝐶
4 sbccom2fi.4 ( [ 𝐴 / 𝑥 ] 𝜑𝜓 )
5 1 2 sbccom2f ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
6 dfsbcq ( 𝐴 / 𝑥 𝐵 = 𝐶 → ( [ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) )
7 3 6 ax-mp ( [ 𝐴 / 𝑥 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 )
8 4 sbcbii ( [ 𝐶 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑[ 𝐶 / 𝑦 ] 𝜓 )
9 5 7 8 3bitri ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐶 / 𝑦 ] 𝜓 )