Metamath Proof Explorer


Theorem csbcom2fi

Description: Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbcom2fi.1 𝐴 ∈ V
csbcom2fi.2 𝑦 𝐴
csbcom2fi.3 𝐴 / 𝑥 𝐵 = 𝐶
csbcom2fi.4 𝐴 / 𝑥 𝐷 = 𝐸
Assertion csbcom2fi 𝐴 / 𝑥 𝐵 / 𝑦 𝐷 = 𝐶 / 𝑦 𝐸

Proof

Step Hyp Ref Expression
1 csbcom2fi.1 𝐴 ∈ V
2 csbcom2fi.2 𝑦 𝐴
3 csbcom2fi.3 𝐴 / 𝑥 𝐵 = 𝐶
4 csbcom2fi.4 𝐴 / 𝑥 𝐷 = 𝐸
5 df-csb 𝐴 / 𝑥 𝐵 / 𝑦 𝐷 = { 𝑧[ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐷 }
6 5 abeq2i ( 𝑧 𝐴 / 𝑥 𝐵 / 𝑦 𝐷[ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐷 )
7 df-csb 𝐵 / 𝑦 𝐷 = { 𝑧[ 𝐵 / 𝑦 ] 𝑧𝐷 }
8 7 abeq2i ( 𝑧 𝐵 / 𝑦 𝐷[ 𝐵 / 𝑦 ] 𝑧𝐷 )
9 8 sbcbii ( [ 𝐴 / 𝑥 ] 𝑧 𝐵 / 𝑦 𝐷[ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧𝐷 )
10 6 9 bitri ( 𝑧 𝐴 / 𝑥 𝐵 / 𝑦 𝐷[ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧𝐷 )
11 df-csb 𝐴 / 𝑥 𝐷 = { 𝑧[ 𝐴 / 𝑥 ] 𝑧𝐷 }
12 11 abeq2i ( 𝑧 𝐴 / 𝑥 𝐷[ 𝐴 / 𝑥 ] 𝑧𝐷 )
13 4 eleq2i ( 𝑧 𝐴 / 𝑥 𝐷𝑧𝐸 )
14 12 13 bitr3i ( [ 𝐴 / 𝑥 ] 𝑧𝐷𝑧𝐸 )
15 1 2 3 14 sbccom2fi ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧𝐷[ 𝐶 / 𝑦 ] 𝑧𝐸 )
16 sbcel2 ( [ 𝐶 / 𝑦 ] 𝑧𝐸𝑧 𝐶 / 𝑦 𝐸 )
17 10 15 16 3bitri ( 𝑧 𝐴 / 𝑥 𝐵 / 𝑦 𝐷𝑧 𝐶 / 𝑦 𝐸 )
18 17 eqriv 𝐴 / 𝑥 𝐵 / 𝑦 𝐷 = 𝐶 / 𝑦 𝐸