Step |
Hyp |
Ref |
Expression |
1 |
|
csbcom2fi.1 |
⊢ 𝐴 ∈ V |
2 |
|
csbcom2fi.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
csbcom2fi.3 |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 |
4 |
|
csbcom2fi.4 |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐸 |
5 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 } |
6 |
5
|
abeq2i |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ) |
7 |
|
df-csb |
⊢ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 = { 𝑧 ∣ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐷 } |
8 |
7
|
abeq2i |
⊢ ( 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ↔ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐷 ) |
9 |
8
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐷 ) |
10 |
6 9
|
bitri |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐷 ) |
11 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐷 } |
12 |
11
|
abeq2i |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐷 ) |
13 |
4
|
eleq2i |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ 𝑧 ∈ 𝐸 ) |
14 |
12 13
|
bitr3i |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐸 ) |
15 |
1 2 3 14
|
sbccom2fi |
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐷 ↔ [ 𝐶 / 𝑦 ] 𝑧 ∈ 𝐸 ) |
16 |
|
sbcel2 |
⊢ ( [ 𝐶 / 𝑦 ] 𝑧 ∈ 𝐸 ↔ 𝑧 ∈ ⦋ 𝐶 / 𝑦 ⦌ 𝐸 ) |
17 |
10 15 16
|
3bitri |
⊢ ( 𝑧 ∈ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 ↔ 𝑧 ∈ ⦋ 𝐶 / 𝑦 ⦌ 𝐸 ) |
18 |
17
|
eqriv |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐷 = ⦋ 𝐶 / 𝑦 ⦌ 𝐸 |