| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbcom2fi.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | csbcom2fi.2 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 3 |  | csbcom2fi.3 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  𝐶 | 
						
							| 4 |  | csbcom2fi.4 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐷  =  𝐸 | 
						
							| 5 |  | df-csb | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] 𝑧  ∈  ⦋ 𝐵  /  𝑦 ⦌ 𝐷 } | 
						
							| 6 | 5 | eqabri | ⊢ ( 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  ↔  [ 𝐴  /  𝑥 ] 𝑧  ∈  ⦋ 𝐵  /  𝑦 ⦌ 𝐷 ) | 
						
							| 7 |  | df-csb | ⊢ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  =  { 𝑧  ∣  [ 𝐵  /  𝑦 ] 𝑧  ∈  𝐷 } | 
						
							| 8 | 7 | eqabri | ⊢ ( 𝑧  ∈  ⦋ 𝐵  /  𝑦 ⦌ 𝐷  ↔  [ 𝐵  /  𝑦 ] 𝑧  ∈  𝐷 ) | 
						
							| 9 | 8 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] 𝑧  ∈  ⦋ 𝐵  /  𝑦 ⦌ 𝐷  ↔  [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝑧  ∈  𝐷 ) | 
						
							| 10 | 6 9 | bitri | ⊢ ( 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  ↔  [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝑧  ∈  𝐷 ) | 
						
							| 11 |  | df-csb | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐷  =  { 𝑧  ∣  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝐷 } | 
						
							| 12 | 11 | eqabri | ⊢ ( 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ↔  [ 𝐴  /  𝑥 ] 𝑧  ∈  𝐷 ) | 
						
							| 13 | 4 | eleq2i | ⊢ ( 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ↔  𝑧  ∈  𝐸 ) | 
						
							| 14 | 12 13 | bitr3i | ⊢ ( [ 𝐴  /  𝑥 ] 𝑧  ∈  𝐷  ↔  𝑧  ∈  𝐸 ) | 
						
							| 15 | 1 2 3 14 | sbccom2fi | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝑧  ∈  𝐷  ↔  [ 𝐶  /  𝑦 ] 𝑧  ∈  𝐸 ) | 
						
							| 16 |  | sbcel2 | ⊢ ( [ 𝐶  /  𝑦 ] 𝑧  ∈  𝐸  ↔  𝑧  ∈  ⦋ 𝐶  /  𝑦 ⦌ 𝐸 ) | 
						
							| 17 | 10 15 16 | 3bitri | ⊢ ( 𝑧  ∈  ⦋ 𝐴  /  𝑥 ⦌ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  ↔  𝑧  ∈  ⦋ 𝐶  /  𝑦 ⦌ 𝐸 ) | 
						
							| 18 | 17 | eqriv | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ⦋ 𝐵  /  𝑦 ⦌ 𝐷  =  ⦋ 𝐶  /  𝑦 ⦌ 𝐸 |