Metamath Proof Explorer


Theorem csbcom2fi

Description: Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbcom2fi.1 A V
csbcom2fi.2 _ y A
csbcom2fi.3 A / x B = C
csbcom2fi.4 A / x D = E
Assertion csbcom2fi A / x B / y D = C / y E

Proof

Step Hyp Ref Expression
1 csbcom2fi.1 A V
2 csbcom2fi.2 _ y A
3 csbcom2fi.3 A / x B = C
4 csbcom2fi.4 A / x D = E
5 df-csb A / x B / y D = z | [˙A / x]˙ z B / y D
6 5 abeq2i z A / x B / y D [˙A / x]˙ z B / y D
7 df-csb B / y D = z | [˙B / y]˙ z D
8 7 abeq2i z B / y D [˙B / y]˙ z D
9 8 sbcbii [˙A / x]˙ z B / y D [˙A / x]˙ [˙B / y]˙ z D
10 6 9 bitri z A / x B / y D [˙A / x]˙ [˙B / y]˙ z D
11 df-csb A / x D = z | [˙A / x]˙ z D
12 11 abeq2i z A / x D [˙A / x]˙ z D
13 4 eleq2i z A / x D z E
14 12 13 bitr3i [˙A / x]˙ z D z E
15 1 2 3 14 sbccom2fi [˙A / x]˙ [˙B / y]˙ z D [˙C / y]˙ z E
16 sbcel2 [˙C / y]˙ z E z C / y E
17 10 15 16 3bitri z A / x B / y D z C / y E
18 17 eqriv A / x B / y D = C / y E