Metamath Proof Explorer


Theorem sbccom2fi

Description: Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbccom2fi.1 A V
sbccom2fi.2 _ y A
sbccom2fi.3 A / x B = C
sbccom2fi.4 [˙A / x]˙ φ ψ
Assertion sbccom2fi [˙A / x]˙ [˙B / y]˙ φ [˙C / y]˙ ψ

Proof

Step Hyp Ref Expression
1 sbccom2fi.1 A V
2 sbccom2fi.2 _ y A
3 sbccom2fi.3 A / x B = C
4 sbccom2fi.4 [˙A / x]˙ φ ψ
5 1 2 sbccom2f [˙A / x]˙ [˙B / y]˙ φ [˙ A / x B / y]˙ [˙A / x]˙ φ
6 dfsbcq A / x B = C [˙ A / x B / y]˙ [˙A / x]˙ φ [˙C / y]˙ [˙A / x]˙ φ
7 3 6 ax-mp [˙ A / x B / y]˙ [˙A / x]˙ φ [˙C / y]˙ [˙A / x]˙ φ
8 4 sbcbii [˙C / y]˙ [˙A / x]˙ φ [˙C / y]˙ ψ
9 5 7 8 3bitri [˙A / x]˙ [˙B / y]˙ φ [˙C / y]˙ ψ