Metamath Proof Explorer


Theorem sbccom2fi

Description: Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019)

Ref Expression
Hypotheses sbccom2fi.1 AV
sbccom2fi.2 _yA
sbccom2fi.3 A/xB=C
sbccom2fi.4 [˙A/x]˙φψ
Assertion sbccom2fi [˙A/x]˙[˙B/y]˙φ[˙C/y]˙ψ

Proof

Step Hyp Ref Expression
1 sbccom2fi.1 AV
2 sbccom2fi.2 _yA
3 sbccom2fi.3 A/xB=C
4 sbccom2fi.4 [˙A/x]˙φψ
5 1 2 sbccom2f [˙A/x]˙[˙B/y]˙φ[˙A/xB/y]˙[˙A/x]˙φ
6 dfsbcq A/xB=C[˙A/xB/y]˙[˙A/x]˙φ[˙C/y]˙[˙A/x]˙φ
7 3 6 ax-mp [˙A/xB/y]˙[˙A/x]˙φ[˙C/y]˙[˙A/x]˙φ
8 4 sbcbii [˙C/y]˙[˙A/x]˙φ[˙C/y]˙ψ
9 5 7 8 3bitri [˙A/x]˙[˙B/y]˙φ[˙C/y]˙ψ