Metamath Proof Explorer
Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
sbceq1ddi.1 |
|
|
|
sbceq1ddi.2 |
|
|
|
sbceq1ddi.3 |
|
|
|
sbceq1ddi.4 |
|
|
Assertion |
sbceq1ddi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbceq1ddi.1 |
|
2 |
|
sbceq1ddi.2 |
|
3 |
|
sbceq1ddi.3 |
|
4 |
|
sbceq1ddi.4 |
|
5 |
1
|
adantr |
|
6 |
2 3
|
sylibr |
|
7 |
6
|
adantl |
|
8 |
5 7
|
sbceq1dd |
|
9 |
8 4
|
sylib |
|