Metamath Proof Explorer


Theorem sbceq1ddi

Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses sbceq1ddi.1 ( 𝜑𝐴 = 𝐵 )
sbceq1ddi.2 ( 𝜓𝜃 )
sbceq1ddi.3 ( [ 𝐴 / 𝑥 ] 𝜒𝜃 )
sbceq1ddi.4 ( [ 𝐵 / 𝑥 ] 𝜒𝜂 )
Assertion sbceq1ddi ( ( 𝜑𝜓 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 sbceq1ddi.1 ( 𝜑𝐴 = 𝐵 )
2 sbceq1ddi.2 ( 𝜓𝜃 )
3 sbceq1ddi.3 ( [ 𝐴 / 𝑥 ] 𝜒𝜃 )
4 sbceq1ddi.4 ( [ 𝐵 / 𝑥 ] 𝜒𝜂 )
5 1 adantr ( ( 𝜑𝜓 ) → 𝐴 = 𝐵 )
6 2 3 sylibr ( 𝜓[ 𝐴 / 𝑥 ] 𝜒 )
7 6 adantl ( ( 𝜑𝜓 ) → [ 𝐴 / 𝑥 ] 𝜒 )
8 5 7 sbceq1dd ( ( 𝜑𝜓 ) → [ 𝐵 / 𝑥 ] 𝜒 )
9 8 4 sylib ( ( 𝜑𝜓 ) → 𝜂 )