Metamath Proof Explorer
Description: A lemma for eliminating an existential quantifier, in inference form.
(Contributed by Giovanni Mascellani, 31-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
exlimddvfi.1 |
|
|
|
exlimddvfi.2 |
|
|
|
exlimddvfi.3 |
|
|
|
exlimddvfi.4 |
|
|
|
exlimddvfi.5 |
|
|
|
exlimddvfi.6 |
|
|
Assertion |
exlimddvfi |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exlimddvfi.1 |
|
| 2 |
|
exlimddvfi.2 |
|
| 3 |
|
exlimddvfi.3 |
|
| 4 |
|
exlimddvfi.4 |
|
| 5 |
|
exlimddvfi.5 |
|
| 6 |
|
exlimddvfi.6 |
|
| 7 |
2
|
sb8e |
|
| 8 |
1 7
|
sylib |
|
| 9 |
|
sbsbc |
|
| 10 |
9 4
|
bitri |
|
| 11 |
10 5
|
sylanb |
|
| 12 |
8 3 11 6
|
exlimddvf |
|