Metamath Proof Explorer
Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
exlimddvf.1 |
|
|
|
exlimddvf.2 |
|
|
|
exlimddvf.3 |
|
|
|
exlimddvf.4 |
|
|
Assertion |
exlimddvf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimddvf.1 |
|
2 |
|
exlimddvf.2 |
|
3 |
|
exlimddvf.3 |
|
4 |
|
exlimddvf.4 |
|
5 |
3
|
expcom |
|
6 |
2 4 5
|
exlimd |
|
7 |
1 6
|
mpan9 |
|