Metamath Proof Explorer


Theorem exlimddvf

Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses exlimddvf.1 φxθ
exlimddvf.2 xψ
exlimddvf.3 θψχ
exlimddvf.4 xχ
Assertion exlimddvf φψχ

Proof

Step Hyp Ref Expression
1 exlimddvf.1 φxθ
2 exlimddvf.2 xψ
3 exlimddvf.3 θψχ
4 exlimddvf.4 xχ
5 3 expcom ψθχ
6 2 4 5 exlimd ψxθχ
7 1 6 mpan9 φψχ