Metamath Proof Explorer
		
		
		
		Description:  A lemma for eliminating an existential quantifier.  (Contributed by Giovanni Mascellani, 30-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | exlimddvf.1 | ⊢ ( 𝜑  →  ∃ 𝑥 𝜃 ) | 
					
						|  |  | exlimddvf.2 | ⊢ Ⅎ 𝑥 𝜓 | 
					
						|  |  | exlimddvf.3 | ⊢ ( ( 𝜃  ∧  𝜓 )  →  𝜒 ) | 
					
						|  |  | exlimddvf.4 | ⊢ Ⅎ 𝑥 𝜒 | 
				
					|  | Assertion | exlimddvf | ⊢  ( ( 𝜑  ∧  𝜓 )  →  𝜒 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exlimddvf.1 | ⊢ ( 𝜑  →  ∃ 𝑥 𝜃 ) | 
						
							| 2 |  | exlimddvf.2 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 3 |  | exlimddvf.3 | ⊢ ( ( 𝜃  ∧  𝜓 )  →  𝜒 ) | 
						
							| 4 |  | exlimddvf.4 | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 5 | 3 | expcom | ⊢ ( 𝜓  →  ( 𝜃  →  𝜒 ) ) | 
						
							| 6 | 2 4 5 | exlimd | ⊢ ( 𝜓  →  ( ∃ 𝑥 𝜃  →  𝜒 ) ) | 
						
							| 7 | 1 6 | mpan9 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜒 ) |