Metamath Proof Explorer
Description: A lemma for eliminating an existential quantifier, in inference form.
(Contributed by Giovanni Mascellani, 31-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
exlimddvfi.1 |
⊢ ( 𝜑 → ∃ 𝑥 𝜃 ) |
|
|
exlimddvfi.2 |
⊢ Ⅎ 𝑦 𝜃 |
|
|
exlimddvfi.3 |
⊢ Ⅎ 𝑦 𝜓 |
|
|
exlimddvfi.4 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜃 ↔ 𝜂 ) |
|
|
exlimddvfi.5 |
⊢ ( ( 𝜂 ∧ 𝜓 ) → 𝜒 ) |
|
|
exlimddvfi.6 |
⊢ Ⅎ 𝑦 𝜒 |
|
Assertion |
exlimddvfi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimddvfi.1 |
⊢ ( 𝜑 → ∃ 𝑥 𝜃 ) |
2 |
|
exlimddvfi.2 |
⊢ Ⅎ 𝑦 𝜃 |
3 |
|
exlimddvfi.3 |
⊢ Ⅎ 𝑦 𝜓 |
4 |
|
exlimddvfi.4 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜃 ↔ 𝜂 ) |
5 |
|
exlimddvfi.5 |
⊢ ( ( 𝜂 ∧ 𝜓 ) → 𝜒 ) |
6 |
|
exlimddvfi.6 |
⊢ Ⅎ 𝑦 𝜒 |
7 |
2
|
sb8e |
⊢ ( ∃ 𝑥 𝜃 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜃 ) |
8 |
1 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜃 ) |
9 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜃 ↔ [ 𝑦 / 𝑥 ] 𝜃 ) |
10 |
9 4
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝜃 ↔ 𝜂 ) |
11 |
10 5
|
sylanb |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜃 ∧ 𝜓 ) → 𝜒 ) |
12 |
8 3 11 6
|
exlimddvf |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |