Metamath Proof Explorer


Theorem exlimddvfi

Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019)

Ref Expression
Hypotheses exlimddvfi.1 ( 𝜑 → ∃ 𝑥 𝜃 )
exlimddvfi.2 𝑦 𝜃
exlimddvfi.3 𝑦 𝜓
exlimddvfi.4 ( [ 𝑦 / 𝑥 ] 𝜃𝜂 )
exlimddvfi.5 ( ( 𝜂𝜓 ) → 𝜒 )
exlimddvfi.6 𝑦 𝜒
Assertion exlimddvfi ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 exlimddvfi.1 ( 𝜑 → ∃ 𝑥 𝜃 )
2 exlimddvfi.2 𝑦 𝜃
3 exlimddvfi.3 𝑦 𝜓
4 exlimddvfi.4 ( [ 𝑦 / 𝑥 ] 𝜃𝜂 )
5 exlimddvfi.5 ( ( 𝜂𝜓 ) → 𝜒 )
6 exlimddvfi.6 𝑦 𝜒
7 2 sb8e ( ∃ 𝑥 𝜃 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜃 )
8 1 7 sylib ( 𝜑 → ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜃 )
9 sbsbc ( [ 𝑦 / 𝑥 ] 𝜃[ 𝑦 / 𝑥 ] 𝜃 )
10 9 4 bitri ( [ 𝑦 / 𝑥 ] 𝜃𝜂 )
11 10 5 sylanb ( ( [ 𝑦 / 𝑥 ] 𝜃𝜓 ) → 𝜒 )
12 8 3 11 6 exlimddvf ( ( 𝜑𝜓 ) → 𝜒 )