Metamath Proof Explorer
Description: A lemma for introducing an existential quantifier, in inference form.
(Contributed by Giovanni Mascellani, 30-May-2019)
|
|
Ref |
Expression |
|
Hypotheses |
spesbcdi.1 |
|
|
|
spesbcdi.2 |
|
|
Assertion |
spesbcdi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spesbcdi.1 |
|
2 |
|
spesbcdi.2 |
|
3 |
1 2
|
sylibr |
|
4 |
3
|
spesbcd |
|