Metamath Proof Explorer


Theorem sqmid3api

Description: Value of the square of the middle term of a 3-term arithmetic progression. (Contributed by Steven Nguyen, 20-Sep-2022)

Ref Expression
Hypotheses sqmid3api.a
|- A e. CC
sqmid3api.n
|- N e. CC
sqmid3api.b
|- ( A + N ) = B
sqmid3api.c
|- ( B + N ) = C
Assertion sqmid3api
|- ( B x. B ) = ( ( A x. C ) + ( N x. N ) )

Proof

Step Hyp Ref Expression
1 sqmid3api.a
 |-  A e. CC
2 sqmid3api.n
 |-  N e. CC
3 sqmid3api.b
 |-  ( A + N ) = B
4 sqmid3api.c
 |-  ( B + N ) = C
5 1 2 1 2 muladdi
 |-  ( ( A + N ) x. ( A + N ) ) = ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) )
6 3 3 oveq12i
 |-  ( ( A + N ) x. ( A + N ) ) = ( B x. B )
7 1 1 mulcli
 |-  ( A x. A ) e. CC
8 2 2 mulcli
 |-  ( N x. N ) e. CC
9 1 2 mulcli
 |-  ( A x. N ) e. CC
10 9 9 addcli
 |-  ( ( A x. N ) + ( A x. N ) ) e. CC
11 7 8 10 add32i
 |-  ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) ) = ( ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) + ( N x. N ) )
12 1 2 addcli
 |-  ( A + N ) e. CC
13 1 12 2 adddii
 |-  ( A x. ( ( A + N ) + N ) ) = ( ( A x. ( A + N ) ) + ( A x. N ) )
14 3 oveq1i
 |-  ( ( A + N ) + N ) = ( B + N )
15 14 4 eqtri
 |-  ( ( A + N ) + N ) = C
16 15 oveq2i
 |-  ( A x. ( ( A + N ) + N ) ) = ( A x. C )
17 1 1 2 adddii
 |-  ( A x. ( A + N ) ) = ( ( A x. A ) + ( A x. N ) )
18 17 oveq1i
 |-  ( ( A x. ( A + N ) ) + ( A x. N ) ) = ( ( ( A x. A ) + ( A x. N ) ) + ( A x. N ) )
19 7 9 9 addassi
 |-  ( ( ( A x. A ) + ( A x. N ) ) + ( A x. N ) ) = ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) )
20 18 19 eqtri
 |-  ( ( A x. ( A + N ) ) + ( A x. N ) ) = ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) )
21 13 16 20 3eqtr3ri
 |-  ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) = ( A x. C )
22 21 oveq1i
 |-  ( ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) + ( N x. N ) ) = ( ( A x. C ) + ( N x. N ) )
23 11 22 eqtri
 |-  ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) ) = ( ( A x. C ) + ( N x. N ) )
24 5 6 23 3eqtr3i
 |-  ( B x. B ) = ( ( A x. C ) + ( N x. N ) )