| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqmid3api.a |
|- A e. CC |
| 2 |
|
sqmid3api.n |
|- N e. CC |
| 3 |
|
sqmid3api.b |
|- ( A + N ) = B |
| 4 |
|
sqmid3api.c |
|- ( B + N ) = C |
| 5 |
1 2 1 2
|
muladdi |
|- ( ( A + N ) x. ( A + N ) ) = ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) ) |
| 6 |
3 3
|
oveq12i |
|- ( ( A + N ) x. ( A + N ) ) = ( B x. B ) |
| 7 |
1 1
|
mulcli |
|- ( A x. A ) e. CC |
| 8 |
2 2
|
mulcli |
|- ( N x. N ) e. CC |
| 9 |
1 2
|
mulcli |
|- ( A x. N ) e. CC |
| 10 |
9 9
|
addcli |
|- ( ( A x. N ) + ( A x. N ) ) e. CC |
| 11 |
7 8 10
|
add32i |
|- ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) ) = ( ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) + ( N x. N ) ) |
| 12 |
1 2
|
addcli |
|- ( A + N ) e. CC |
| 13 |
1 12 2
|
adddii |
|- ( A x. ( ( A + N ) + N ) ) = ( ( A x. ( A + N ) ) + ( A x. N ) ) |
| 14 |
3
|
oveq1i |
|- ( ( A + N ) + N ) = ( B + N ) |
| 15 |
14 4
|
eqtri |
|- ( ( A + N ) + N ) = C |
| 16 |
15
|
oveq2i |
|- ( A x. ( ( A + N ) + N ) ) = ( A x. C ) |
| 17 |
1 1 2
|
adddii |
|- ( A x. ( A + N ) ) = ( ( A x. A ) + ( A x. N ) ) |
| 18 |
17
|
oveq1i |
|- ( ( A x. ( A + N ) ) + ( A x. N ) ) = ( ( ( A x. A ) + ( A x. N ) ) + ( A x. N ) ) |
| 19 |
7 9 9
|
addassi |
|- ( ( ( A x. A ) + ( A x. N ) ) + ( A x. N ) ) = ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) |
| 20 |
18 19
|
eqtri |
|- ( ( A x. ( A + N ) ) + ( A x. N ) ) = ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) |
| 21 |
13 16 20
|
3eqtr3ri |
|- ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) = ( A x. C ) |
| 22 |
21
|
oveq1i |
|- ( ( ( A x. A ) + ( ( A x. N ) + ( A x. N ) ) ) + ( N x. N ) ) = ( ( A x. C ) + ( N x. N ) ) |
| 23 |
11 22
|
eqtri |
|- ( ( ( A x. A ) + ( N x. N ) ) + ( ( A x. N ) + ( A x. N ) ) ) = ( ( A x. C ) + ( N x. N ) ) |
| 24 |
5 6 23
|
3eqtr3i |
|- ( B x. B ) = ( ( A x. C ) + ( N x. N ) ) |